Consider a parameter $\theta \in \Theta$. We observe data x sampled from the distribution parametrized by θ. Let $\hat{\theta} \equiv \hat{\theta}(x)$ be an estimator of θ based on data x. We are going to compare different estimators.

Let a loss function $L(\theta, \hat{\theta}) : \Theta \times \Theta \mapsto \mathbb{R}_+$ be defined. For example,

\[
L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2
\]

\[
L(\theta, \hat{\theta}) = \begin{cases} 0 & \theta = \hat{\theta} \\ 1 & \theta \neq \hat{\theta} \end{cases}
\]

\[
L(\theta, \hat{\theta}) = \int p(x; \theta) \log \left(\frac{p(x; \theta)}{p(x; \hat{\theta})} \right) dx
\]

The risk $R(\theta, \hat{\theta})$ is the average loss, averaged over training sets sampled from the true θ:

\[
R(\theta, \hat{\theta}) = \mathbb{E}_\theta[L(\theta, \hat{\theta}(x))] = \int p(x; \theta) L(\theta, \hat{\theta}(x)) dx
\]

Recall that \mathbb{E}_θ means the expectation over x drawn from the distribution with fixed parameter θ, not the expectation over different θ.

Example 1 Let $X \sim N(\theta, 1)$. Let $\hat{\theta}_1 = X$ and $\hat{\theta}_2 = 3.14$. Assume squared error loss. Then $R(\theta, \hat{\theta}_1) = 1$ (hint: variance), $R(\theta, \hat{\theta}_2) = \mathbb{E}_\theta((\theta - 3.14)^2) = (\theta - 3.14)^2$. (hint: no X here) Over the whole range of possible $\theta \in \mathbb{R}$, neither estimator consistently dominates.

Example 2 Let $X_1, \ldots, X_n \sim \text{Bernoulli}(\theta)$. Consider squared error loss. Let $\hat{\theta}_1 = \frac{\sum X_i}{n}$, the sample mean. Let $\hat{\theta}_2 = \frac{\alpha + \sum X_i}{\alpha + \beta + n}$ which is the “smoothed” estimate, i.e., the posterior mean under a Beta(α, β) prior. Let $\hat{\theta}_3 = X_1$, the first sample. Then, $R(\theta, \hat{\theta}_1) = \mathbb{V}_\theta(\sum \frac{X_i}{n}) = \frac{n(1 - \theta)}{n}$ and $R(\theta, \hat{\theta}_3) = \mathbb{V}(X_1) = \theta(1 - \theta)$. So $\hat{\theta}_3$ is out as a learning algorithm. But what about $\hat{\theta}_2$?

\[
R(\theta, \hat{\theta}_2) = \mathbb{E}_\theta((\theta - \hat{\theta}_2)^2) = \mathbb{V}_\theta(\hat{\theta}_2) + (\text{bias}(\hat{\theta}_2))^2
\]

\[
= \frac{n\theta(1 - \theta)}{(n + \alpha + \beta)^2} + \left(\frac{n\theta + \alpha}{n + \alpha + \beta - \theta} \right)^2
\]

It is not difficult to show that one can make θ disappear from the risk (i.e., task insensitivity) by setting

$\alpha = \beta = \sqrt{n}/2$

with

$R(\theta, \hat{\theta}_2) = \frac{1}{4(\sqrt{n} + 1)^2}$

It turns out this particular choice of α, β leads to a so-called minimax estimator $\hat{\theta}_2$, as we will show later. However, there is no dominance between $\hat{\theta}_1$ and $\hat{\theta}_2$ as the figure below shows:
The maximum risk is
\[R_{\text{max}}(\hat{\theta}) = \sup_{\theta} R(\theta, \hat{\theta}) \]
(8)

The Bayes risk under prior \(f(\theta) \) is
\[R_f^{\text{Bayes}}(\hat{\theta}) = \int R(\theta, \hat{\theta})f(\theta)d\theta. \]
(9)

Accordingly, two different criteria to define “the best estimator” (or the best learning algorithm) is the Bayes rule and the minimax rule, respectively. An estimator \(\hat{\theta}^{\text{Bayes}} \) is a Bayes rule with respect to the prior \(f \) if
\[\hat{\theta}^{\text{Bayes}} = \arg \inf_{\hat{\theta}} \int R(\theta, \hat{\theta})f(\theta)d\theta, \]
(10)

where the infimum is over all estimators \(\hat{\theta} \). An estimator \(\hat{\theta}^{\text{minimax}} \) that minimizes the maximum risk is a minimax rule:
\[\hat{\theta}^{\text{minimax}} = \arg \inf_{\hat{\theta}} \sup_{\theta} R(\theta, \hat{\theta}), \]
(11)

where again the infimum is over all estimators \(\hat{\theta} \).

We list the following theorems without proof. For details see AoS p.197.

Theorem 1 Let \(f(\theta) \) be a prior, \(x \) a sample, and \(f(\theta \mid x) \) the corresponding posterior. If \(L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2 \) then the Bayes rule is the posterior mean:
\[\hat{\theta}^{\text{Bayes}}(x) = \int \theta f(\theta \mid x)d\theta = \mathbb{E}(\theta \mid X = x). \]
(12)

If \(L(\theta, \hat{\theta}) = |\theta - \hat{\theta}| \) then the Bayes rule is the posterior median. If \(L(\theta, \hat{\theta}) \) is zero-one loss then the Bayes rule is the posterior mode.

Theorem 2 Suppose that \(\hat{\theta} \) is the Bayes rule with respect to some prior \(f \). Suppose further that \(\hat{\theta} \) has a constant risk: \(R(\theta, \hat{\theta}) = c \) for all \(\theta \in \Theta \). Then \(\hat{\theta} \) is minimax.
Example 3 In example 2 we made the choice $\alpha = \beta = \sqrt{n}/2$ so that the risk $R(\theta, \hat{\theta}_2) = \frac{1}{4(\sqrt{n} + 1)^2}$ is a constant. Also, $\hat{\theta}_2$ is the posterior mean and hence by Theorem 1 is a Bayes rule under the prior $\text{Beta}(\sqrt{n}/2, \sqrt{n}/2)$. Putting them together, by Theorem 2 $\hat{\theta}_2$ is minimax.