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Let x1, . . . ,xn ∈ RD. It is convenient to assume that the points are centered
∑

i xi = 0 (one can always
centered the data by subtracting the sample mean). We want to represent these points in some lower
dimensional space Rd where typically d� D.

1 Principal Component Analysis (PCA)

PCA can be justified in several ways.

1.1 The Variance Preservation View

Let’s consider a projection onto a line going through the origin. Such a line can be specified by a vector
w ∈ RD. The projection of x is

w>x
‖w‖

. (1)

For simplicity, let us consider w with unit length. The variance of the projected dataset is

1
n

n∑
i=1

(w>xi)2 = w>Sw, (2)

where
S =

1
n

∑
i

xix>i (3)

is the sample covariance matrix since we assume the dataset is centered. The goal of PCA (in this 1D case)
is to find the w that maximizes the variance, in the hope that it maximally preserves the distinction among
points. This leads to the following optimization problem

max
w

w>Sw (4)

s.t. ‖w‖ = 1. (5)

Let’s solve it by forming the Lagrangian

w>Sw + λ(1−w>w). (6)

The gradient w.r.t. w is
∇ = 2Sw − 2λw. (7)

Setting to zero, we find that
Sw = λw, (8)

i.e., the desired direction w is an eigenvector of S! But which one? Recall the projected variance is

w>Sw = w>λw = λ, (9)
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we see that we want λ to be the largest eigenvalue of S and w the corresponding eigenvector. In other
words, let λ1, . . . , λn be the eigenvalues of S in non-increasing order, and φ1, . . . , φn be the corresponding
eigenvectors. Then φ1 is the maximum variance preserving direction, and the resulting variance is simply
λ1. This is PCA with d = 1: a D-dimensional point x is projected to a scalar φ>1 x. Note that when S’s
top eigenvalue has multiplicity larger than one, i.e., λ1 = λ2, then PCA is not unique: any unit vector in
span(φ1, φ2) can be the PCA direction.

If we want d > 1, it can be shown that we want to project x onto the first d eigenvectors

x→ (φ>1 x, . . . , φ>d x)>. (10)

Recall that one can view φ1, . . . , φD as the D major-to-minor axes of an ellipsoid represented by the sample
covariance matrix (NB this does not assume that the underlying distribution is Gaussian). Clearly, if d = D
then φ1 . . . φD is a basis for RD, and this PCA projection amounts to a rotation of the coordinate system
(align them with the eigenvectors) without any loss of information.

1.2 The Minimum Reconstruction Error View

Using any orthonormal basis u1 . . .uD, a training point xi (recall it has been centered) can be written as

xi =
D∑

j=1

αijuj (11)

where
αij = u>j xi. (12)

Consider the d-term approximation to xi:

x̂i =
d∑

j=1

αijuj . (13)

We want the approximation error to be small for all training points:

1
n

n∑
i=1

‖x̂i − xi‖2 =
1
n

n∑
i=1

‖
D∑

j=d+1

αijuj‖2 =
1
n

n∑
i=1

D∑
j=d+1

α2
ij (14)

=
1
n

n∑
i=1

D∑
j=d+1

u>j xix>i uj =
D∑

j=d+1

u>j Suj . (15)

If d = D−1, i.e., we need to remove a single dimension, it is easy to see that uD = φD because φ>DSφD = λD

is the smallest among all unit vectors. Similarly, the other dimensions to remove are subsequently the
eigenvectors corresponding to the least eigenvalues.

Finally, it should be pointed out that PCA is an unsupervised technique. It could go terribly wrong
as a preprocessing step for classification, e.g., when the decision boundary is orthogonal to the smallest
eigenvector.

2 Classical Multidimensional Scaling (MDS)

MDS is not a dimensionality reduction method, but rather an embedding method. We have n items but we
do not know their feature representation. Instead, we are given their pairwise squared distances

‖xi − xj‖2. (16)
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Our goal is to embed these items in Rd, i.e., finding a feature representation x1, . . . ,xn such that it satisfies
the given squared distances.

We introduce the n× n centering matrix

P = In×n −
1
n

U (17)

where U is the n × n all-1 matrix. This matrix is called the centering matrix because when it applies to a
n× d matrix X where each row is a data point, the result

PX = [xi − µ], (18)

is to subtract µ the mean of X from each row. In addition,

P1 = 0 (19)

where 1 here is the all-1 vector. Now consider

PXX>P = (PX)(PX)> (20)

We see that the ij-th entry is (xi − µ)>(xj − µ), i.e., the inner product between the centered i-th and j-th
items. Furthermore, with this result

P [‖xi − xj‖2]P = P [x>i xi + x>j xj − 2x>i xj ]P (21)

= P [x>i xi]P + P [x>j xj ]P − 2P [x>i xj ]P (22)

= −2P [x>i xj ]P (23)
= −2[(xi − µ)>(xj − µ)] (24)

(25)

where we used the fact P [ai]n×nP = P [ai]n×111×nP = P [ai]n×10 = 0. This suggests that given a squared
distance matrix [‖xi − xj‖2], the matrix

Ā = −1
2
P [‖xi − xj‖2]P (26)

gives us the centered inner product matrix [(xi − µ)>(xj − µ)].

Theorem 1 Consider the class of symmetric matrices A ∈ Sn such that Aij ≥ 0 and Aii = 0, ∀i, j. Then
Ā = − 1

2PAP is positive semi-definite if and only if A is a squared distance matrix. The minimal embedding
dimension d is the rank of Ā.

Now that we have Ā, we need to actually find an embedding. To this end, we perform eigen-decomposition

Ā =
n∑

k=1

λkφkφ>k . (27)

where λ is sorted in decreasing order and the first d will be nonzero. Now consider the n× d matrix

Y = [φ1| . . . |φd]Λ−1/2 (28)

where Λ−1/2 is the d× d diagonal matrix with the k-th diagonal element
√

λk. It is easy to see that

Ā = Y Y >. (29)

We take the rows of Y to be the embedding of the n items.
The minimum embedding dimension d is the dimension for which there is no distortion. One can ask for

an even smaller dimensional embedding d′ < d, where one simply uses the top d′ eigenvector / eigenvalues
in (28).

Classical MDS has been generalized to non-metric MDS, where the input is not squared distances but
rather some general notion of dissimilarities. Ordinal MDS is an example of non-metric MDS where the
input is the ranking of pairwise distances, but not the distances themselves.
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3 Isomap

PCA and MDS both assume that the data lives in a Euclidean (sub)space. Isomap assumes that the data
lives on a low dimensional manifold embedded in a Euclidean space. In this case, we are given the feature
representation x1, . . . ,xn ∈ RD. But instead of computing the Euclidean distances

‖xi − xj‖2. (30)

we should rather use the geodesic distance along the manifold between xi and xj . Isomap approximates
the geodesic distance by the shortest path length on a graph (e.g., kNN graph with small k) constructed
on the data points. It then uses MDS on these (squared) shortest path lengths to find a low dimensional
embedding.

4 Locally Linear Embedding (LLE)

LLE is an alternative to Isomap. It similarly starts with a kNN graph. Let N(i) be the set of k nearest
neighbors of xi. LLE works in two steps:

1. For each xi ∈ RD, fit itself by a linear combination of its neighbors. Each neighbor will have a weight
in this fit.

2. Find new points y1, . . . ,yn ∈ Rd such that each yi is the same fit by its neighbors, using the same
neighborhood and weights.

The fit in the first step is
‖xi −

∑
j∈N(i)

wijxj‖2 (31)

where we introduced weights wij . This fit should be invariant by global translation xi ← xi + ∆, ∆ ∈ RD,
which induces the constraint ∑

j∈N(i)

wij = 1. (32)

To find w, we solve

min
w

n∑
i=1

1
2
‖xi −

∑
j∈N(i)

wijxj‖2 (33)

s.t.
∑

j∈N(i)

wij = 1, ∀i. (34)

This problem has a closed form solution.
With the wij ’s at hand, we now find y1, . . . ,yn ∈ Rd to minimize a similar fit error:

min
y

n∑
i=1

1
2
‖yi −

∑
j∈N(i)

wijyj‖2 (35)

To avoid the trivial all-0 solution, and to make the y’s truly span a d-dimensional space, we constrain the
matrix Yn×d whose rows are the y’s to have rank d. This can be achieved by a constraint Y >PY = Z for
any symmetric Pn×n and Zd×d of full rank. This is because

d = rank(Z) = rank(Y >PY ) ≤ min(rank(Y >), rank(P ), rank(Y )) = min(rank(Y ), n) = rank(Y ) ≤ d. (36)

Note we required n ≥ d, which is realistic. In particular, we require

1
n

Y >Y = Id×d. (37)

The solution can be shown to be the 2nd to the (d + 1)-th unit eigenvectors of (I −W )>(I −W ).
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5 Laplacian Eigenmaps

We assume a graph Wn×n is constructed on x1 . . .xn ∈ RD. This could be a kNN graph with wij = 1 if xi,xj

are neighbors, or a weighted fully connected graph with wij = exp
(
−‖xi − xj‖2/σ2

)
. Note the weights have

a very different meaning than those in LLE. The intuition is that we want to find y1, . . . ,yn ∈ Rd such that
if wij is large, yi,yj should be similar to each other (because xi,xj was similar, that was how we got a large
weight wij). This can be formulated as

min
y

∑
ij

wij‖yi − yj‖2. (38)

Let Yn×d be the matrix whose rows are the y’s, and Dn×n is the diagonal degree matrix with

Dii =
n∑

j=1

wij . (39)

Our objective can be written as
2trace(Y >LY ), (40)

where
L = D −W (41)

is known as the Laplacian matrix, hence the name. Similar to LLE, to avoid trivial solutions, we require

Y >DY = I. (42)

This results in the generalized eigenvalue problem

Ly = λDy. (43)

The optimal Y is constructed with columns being the eigenvectors of the above generalized eigenvalue
problem, with the smallest eigenvalues (but excluding the smallest one which is zero, corresponding to a
constant eigenvector).
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