CS731 Spring 2011 Advanced Artificial Intelligence
Nonparametric Density Estimation and Regression

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

The methods in this lecture are nonparametric.

1 Kernel Density Estimation

Let f be a probability density function. Given z; ...z, ~ f, the goal is to estimate f.
Let us introduce the concept of smoothing kernel, not to be confused with the Mercer kernels used in the
Reproducing Kernel Hilbert Space sense. A smoothing kernel K is any smooth function satisfying
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Some common smoothing kernels are

e The Gaussian kernel K(z) = 22 /2)

5= exp(—
e The Epanechnikov kernel K (z) = 2(1 — 2?), z € [-1,1], 0 otherwise

Given a kernel K and a positive bandwidth h, the kernel density estimator is defined to be
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where the subscript n in fn(m) denotes the training sample size. The intuition is to put a little bump on
each training point and sum them up. It turns out that the choice of K is not crucial, but the choice of h is
important. In general, we let the bandwidth depend on sample size with the notation h,,.

Theorem 1 Assume that f is continuous at x, hy, — 0, and nh, — 0o asn — co. Then fn(x) il f(z).

Notice that f,(z) is a random variable. Let R, = E(f,(x) — f(x))? be the risk at point z (with squared
loss), and R = [ R,dx be the integrated risk. Then the asymptotically optimal bandwidth is

h} = cnil/(4+d), (5)

and the risk decreases as
R=0O(n Y0+ ), (6)

where d is the dimensionality of x. However, the constant ¢ in the optimal bandwidth depends on the un-
known density f, rending this theoretical result useless in practice. One typically find the optimal bandwidth
by cross validation, as follows.
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We will work with the loss function called the integrated squared error

L(h)

[ - s
/fn Ydx — 2 /fn x)dx + const(h).
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be the part of the loss that depends on h. The cross-validation estimator of risk is

m= [ i’ dx——zf_ )

Let

where f i(z;) is the kernel density estimator obtained on the training data excluding ;.

(10)

This is leave-

one-out cross validation. It turns out that there is a short cut to computing J(h) without the need to do

leave-one-out:

Theorem 2 For any h > 0,

Furthermore,

Uz (o(55) -2 (252)) o0 ().

where G(z) = [ K(z — y)K (y)dy.

For example, when K = N(0,1), G = N(0,2).

2 Nonparametric Regression

Let
yi = (i) + €

for i =1...n, Ele;] = 0,V[e;] = 0. The goal is to estimate r(z) from (z1,v1) ... (Tn, Yn)-

An ebtlmator 7 of r is a linear smoother if, for each z, there exists a vector v(x) = (y(z), ...

that .
z) =Y A(x)y
=1

That is, v(z) is the weight given to y; in forming the estimate 7(x).
* This does not mean 7(x) is necessarily linear in !

Example 1 Linear regression is a special case of linear smoother:

Zﬁdxd = Z'Yz yz»

where
V(x)T = xT(XTX)*lXT.

(11)

(12)
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2.1 The Nadaraya-Watson Kernel Estimator
Let A > 0 be the bandwidth, and K a smoothing kernel. The Nadaraya- Watson kernel estimator is a linear

smoother .
x) = Z%(f)yz (17)
i=1

K()
E?:l K (I_hz]>

To select the bandwidth in practice, we use cross-validation. The risk under squared loss is

where

Yi(w) = (18)

E (i S (i) - r(xi))2> . (19)

i=1

The corresponding leave-one-out score is
Z(’F(xi) — i) (20)

For each point x;, the leave-one-out estimator is

@) = Y @ )

where "
’YJ xT . .
e i
Vi) = { S @ ’ . (22)
0 j=1.
That is, y_; j(x) is a renormalized version of v;(z) after removing the i-th weight. Again, there is no need to
actually compute n different estimates 7_;, because the leave-one-out score can be computed in closed-form.

Theorem 3 The leave-one-out score can be written as
yi — (@) \?
= - : 23
2 (=6) =
One then selects the optimal bandwidth by minimizing the score above (could have multiple local minima).

2.2 Local Linear Regression

First, consider the best constant function fit hatr(z) = a to training data:

1 2

m;nﬁZ(afyi) . (24)
K2

The solution is simply a = %Zl y;. Now, consider the weighted version “centered” at x where the i-th

training point is associated with a weight ~;(z) = K((z — x;)/h). The constant fit to this weighted training

data is

mln — Z vi(@)(a — yi)?. (25)
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The solution turns out to be

o= M (26)

i1 i(2)
Because it is a constant function, in particular at z we have #(x) = a. This recovers the Nadaraya-Watson
kernel estimator.

More importantly, this suggests a way to improve upon the Nadaraya-Watson kernel estimator: instead
of assuming a constant function 7(u) = a in , we may assume a family of linear functions, one of each
x’s neighborhood:

Pz (u) = ap(x) + a1 (x)(u — ). (27)

We now minimize the following objective:
2
% —Ly) T Yi) - 28
ao(x)al(x>n27 ) + ay () (u — 2:) — yi) (28)

Once the solution ag(z) and () are found, we have
Po(u = ) = Go(x). (29)

This is called local linear regression. Even though this is the constant term, it is different from a local
constant fit (which would be Nadaraya-Watson). See AoS Theorem 5.57 for the closed-form solution.
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