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Random projection is a powerful technique behind compressive sensing and matrix completion.

1 The Johnson-Lindenstrauss Lemma

When n points in some high dimensional space are randomly projected down to O( log n
ε2 ) dimensions, with

large probability the pairwise squared distances between the points change by a factor of no more than 1± ε.
Note the original dimensionality does not matter. This is a statistical property based on concentration of
measure. It is useful as an efficient dimension reduction tool.

The following theorem considers projecting a random vector onto a fixed subspace, which is equivalent
to projecting a fixed vector onto a random subspace.

Lemma 1 Let Y ∈ Rd be chosen uniformly from the surface of the d-dimensional sphere. Let Z =
(Y1, Y2, . . . , Yk) be the projection onto the first k coordinates, where k < d. Then for any α < 1 and
β > 1,
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With this, one can prove the Johnson-Lindenstrauss Lemma.

Theorem 1 (Johnson-Lindenstrauss) Let x1, . . . , xn ∈ Rd, and let ε ∈ (0, 1). Let k be a positive integer
satisfying

k ≥ 8δ log n
ε2 − 2ε3/3

(3)

where δ ≥ 1. Then a random projection Πk : Rd 7→ Rk satisfies
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If Πk is a good projection, then the scaled mapping fk(x) =
√

d
kΠk(x) satisfies

(1− ε)‖xi − xj‖2 ≤ ‖fk(xi)− fk(xj)‖2 ≤ (1 + ε)‖xi − xj‖2,∀i 6= j. (5)

That is, fk approximately preserves distance.
In addition to preserving pairwise distances, random projection also approximately preserves inner prod-

ucts.

Theorem 2 Let x, y ∈ Rd with ‖x‖2, ‖y‖2 ≤ 1. Assume that Φ is a k × d random matrix with independent
N(0, 1/d) entries. Then for all ε > 0,
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where C1 = 4e/
√

6π ≈ 2.5 and C2 =
√

8e ≈ 7.7.
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2 Compressive Sensing

Consider signal f ∈ Rn, e.g., an image with n pixels. Assuming there is some orthonormal basis Ψn×n =
[ψ1 . . . ψn], e.g. wavelets, that

f(t) =
n∑

i=1

ψi(t)xi. (7)

The intuition is that the coefficients x = [x1 . . . xn] is sparse (having many zeros) or nearly so for many
real signals under an appropriate basis. You may not know which coefficients are significant, though (i.e.,
x may not be sorted in any way). Say you don’t see f or x. Instead, you can take a few measurements. A
measurement is

yj = φ>j f + εj = φ>j Ψx+ z, (8)

where φj ∈ Rn is a sensing vector that you choose, and z is noise. Your noisy measurement is yj . How many
measurements do you need in order to recover f? Clearly, if it is noiseless, n measurements with φj = ej

(the canonical basis, or in fact any basis) is sufficient to recover f . Can you do better?
Say x is S-sparse, i.e., having S nonzero elements. If you know the location of those nonzero elements,

you only need S measurements with φj = ψk where k is a nonzero location in x. What if you do not know
the nonzero locations? What if you do not even know Ψ before you measure the signal? Is there a way to
take advantage of the knowledge that x is S-sparse?

Compressive sensing offers a surprising solution: you only need O(S log(n/S)) random measurements,
and there is a very efficient way to recover x (or f). Let us consider the m× n sensing matrix

A = ΦΨ (9)

where Φ = [φ1 . . . φm]> and m ≤ n. We have

y = Ax+ z, (10)

where y is the vector of m measurements.
For integer S, define the isometry constant δS of a matrix A to be the smallest number such that

(1− δS)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δS)‖x‖2 (11)

for all S-sparse x. Roughly speaking, the matrix A has the restricted isometry property (RIP) of order S if
δS is not close to one. If our goal is to recover S-sparse signal x from y and A is RIP of order 2S, then any
difference between two S-sparse targets xi − xj (which is at most 2S-sparse) is approximately preserved in
the measurements yi and yj :

(1− δ2S)‖xi − xj‖2 ≤ ‖yi − yj‖2 = ‖A(xi − xj)‖2 ≤ (1 + δ2S)‖xi − xj‖2. (12)

Conceptually, this allows us to “enumerate” all S-sparse x′ and compare its measurement y′ = Ax′ to the
actual observed measurement y. The closest x′ is the solution. As we see below, there is a much more elegant
algorithm.

Theorem 3 (Noiseless Case) Assume δ2S <
√

2− 1. Given measurement y = Ax, the solution x∗ to

min
x′∈Rn

‖x′‖1 (13)

s.t. Ax′ = y (14)

obeys

‖x∗ − x‖2 ≤ C0/
√
S‖x− xS‖1 (15)

‖x∗ − x‖1 ≤ C0‖x− xS‖1, (16)

where xS is the vector x with all but the largest S components set to 0.
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Note if x is already S-sparse, this indicates perfect recovery. Also note that this involves a tractable `1
minimization problem.

Theorem 4 (Noisy Case) Assume δ2S <
√

2− 1. Given noisy measurement y = Ax+ z, the solution x∗

to the LASSO problem

min
x′∈Rn

‖x′‖1 (17)

s.t. ‖Ax′ − y‖ ≤ ε (18)

obeys

‖x∗ − x‖2 ≤ C0/
√
S‖x− xS‖1 + C1ε. (19)

These theorems assume that we have A with the RIP property. Recall our A = ΦΨ where Ψ is a fixed
orthonormal basis. It turns out that one can let the entries of Φ be

1. sampling n column-vectors uniformly at random on the unit sphere in Rm; or

2. iid samples from N(0, 1/m); or

3. iid samples from Bernoulli(0.5, 0.5) on φij = ±1/
√
m.

When
m ≥ CS log(n/S), (20)

with overwhelming probability, the resulting A obeys the RIP. Also note that these designs of the sensing
matrix Φ is independent of Ψ. This means that sensing is “universal” and can be done without knowing
what is the sparse basis Ψ of the signal (of course, one needs to know Ψ during recovery).

3 Matrix Completion

Let M be an n1 × n2 matrix of rank r. Suppose we observe m entries of M . How large does m have to be
to recover M? We will show that it is a small number. However, there are a few conditions.

Note the observed entries cannot be adversarially placed – if we miss a whole row when M is rank-1 outer
product, there is no way to recover M . Therefore, one assumes that the locations are sampled uniformly at
random.

It is not enough for M to be low rank. Consider M = e1e
>
1 . It is very difficult to hit the 1 by chance.

Instead, we consider the following family of M ’s.

Definition 1 Let U be a subspace of Rn of dimension r, and PU be the orthogonal projection onto U . Then
the coherence of U is defined as

µ(U) =
n

r
max

1≤i≤n
‖Puei‖2. (21)

We are interested in low coherence subspaces. Let the SVD of M be

M =
r∑

k=1

σkukv
>
k (22)

with column and row spaces be U and V , respectively. The M we consider has two properties:

1. The coherence max(µ(U), µ(V )) ≤ µ0 for some positive µ0;

2. The n1 × n2 matrix
∑r

k=1 ukv
>
k has a maximum entry bounded by µ1

√
r/(n1n2) in absolute value for

some positive µ1.
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For such M , we have the following theorem.

Theorem 5 Let M be an n1 × n2 matrix of rank r satisfying the above two conditions. Suppose we observe
m entries with locations sampled uniformly at random. Then there exist constants C, c such that if

m ≥ Cmax(µ2
1, µ

1/2
0 µ1, µ0n

1/4)nr(β log n) (23)

for some β > 2, then the minimizer to the nuclear norm minimization problem

min
X∈Rn1×n2

‖X‖∗ (24)

s.t. Xij = Mij for observed locations (i, j) (25)

is unique and equal to M with probability at least 1− cn−β. For r ≤ µ−1
0 n1/5 the bound can be improved to

m ≥ Cµ0n
6/5r(β log n) (26)

with the same probability of success.

Here, the nuclear norm ‖X‖∗ =
∑r

k=1 σk is the sum of singular values of X. It is a convex approximation to
the rank of X, i.e., the number of nonzero singular values. When X is symmetric and positive semi-definite,
its nuclear norm is the same as its trace.
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