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Random projection is a powerful technique behind compressive sensing and matrix completion.

1 The Johnson-Lindenstrauss Lemma
When n points in some high dimensional space are randomly projected down to 0(105”) dimensions, with
large probability the pairwise squared distances between the points change by a factor of no more than 1+e.
Note the original dimensionality does not matter. This is a statistical property based on concentration of
measure. It is useful as an efficient dimension reduction tool.

The following theorem considers projecting a random vector onto a fixed subspace, which is equivalent
to projecting a fixed vector onto a random subspace.

Lemma 1 Let Y € R? be chosen uniformly from the surface of the d-dimensional sphere. Let Z =
(W1,Ys,...,Yy) be the projection onto the first k coordinates, where k < d. Then for any o < 1 and

p>1,
Pr (Z|Z2 < a)
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With this, one can prove the Johnson-Lindenstrauss Lemma.
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Theorem 1 (Johnson-Lindenstrauss) Let x1,...,2, € R?, and let € € (0,1). Let k be a positive integer
satisfying
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where § > 1. Then a random projection I, : R® — RF satisfies
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If TI;, is a good projection, then the scaled mapping fi(z) = \/%Hk(m) satisfies
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That is, fr approximately preserves distance.
In addition to preserving pairwise distances, random projection also approximately preserves inner prod-
ucts.

Theorem 2 Let z,y € R? with ||z||2, ||ylla < 1. Assume that ® is a k x d random matriz with independent
N(0,1/d) entries. Then for all € > 0,
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where C1 = 4e/\/6m ~ 2.5 and Cy = \/8e ~ 7.7.
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2 Compressive Sensing

Consider signal f € R™, e.g., an image with n pixels. Assuming there is some orthonormal basis ¥, «, =
[th1...1p], e.g. wavelets, that

£ =Y vt ™

The intuition is that the coefficients = [z1...x,] is sparse (having many zeros) or nearly so for many
real signals under an appropriate basis. You may not know which coefficients are significant, though (i.e.,
2 may not be sorted in any way). Say you don’t see f or z. Instead, you can take a few measurements. A
measurement is

yi =) f+e =] Y+ z, (8)

where ¢; € R" is a sensing vector that you choose, and z is noise. Your noisy measurement is ;. How many
measurements do you need in order to recover f7 Clearly, if it is noiseless, n measurements with ¢; = ¢;
(the canonical basis, or in fact any basis) is sufficient to recover f. Can you do better?

Say x is S-sparse, i.e., having S nonzero elements. If you know the location of those nonzero elements,
you only need S measurements with ¢; = 1, where £ is a nonzero location in . What if you do not know
the nonzero locations? What if you do not even know ¥ before you measure the signal? Is there a way to
take advantage of the knowledge that = is S-sparse?

Compressive sensing offers a surprising solution: you only need O(Slog(n/S)) random measurements,
and there is a very efficient way to recover x (or f). Let us consider the m X n sensing matrix

A=V (9)
where ® = [¢; ... ¢,,] " and m < n. We have
y = Ax + z, (10)

where y is the vector of m measurements.
For integer S, define the isometry constant ds of a matrix A to be the smallest number such that

(1= ds)llz]* < lAz]* < (1 + 8s)l|=]? (11)

for all S-sparse z. Roughly speaking, the matrix A has the restricted isometry property (RIP) of order S if
dg is not close to one. If our goal is to recover S-sparse signal x from y and A is RIP of order 2S5, then any
difference between two S-sparse targets z; — z; (which is at most 2S-sparse) is approximately preserved in
the measurements y; and y;:

(1= Gas)llzi — 2511 < llys — y; 11> = [ Azs — 25)II* < (1 + d2s) s — 1. (12)

Conceptually, this allows us to “enumerate” all S-sparse ' and compare its measurement 3’ = Az’ to the
actual observed measurement y. The closest x’ is the solution. As we see below, there is a much more elegant
algorithm.

Theorem 3 (Noiseless Case) Assume da5 < /2 — 1. Given measurement y = Ax, the solution x* to

. /
min [/l (13)
s.t. Ar' =y (14)

obeys
lz* =zl < Co/VS|lz — sl (15)
2" =zl < Coll —zsll, (16)

where xg is the vector x with all but the largest S components set to 0.
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Note if = is already S-sparse, this indicates perfect recovery. Also note that this involves a tractable ¢;
minimization problem.

Theorem 4 (Noisy Case) Assume 65 < /2 — 1. Given noisy measurement y = Az + z, the solution z*
to the LASSO problem

. /
min o[y (17)
s.t. |Az" —y|| <€ (18)
obeys
la* —alls < Co/VBllz sl +Chre (19)

These theorems assume that we have A with the RIP property. Recall our A = ®W¥ where ¥ is a fixed
orthonormal basis. It turns out that one can let the entries of ® be

1. sampling n column-vectors uniformly at random on the unit sphere in R™; or
2. iid samples from N(0,1/m); or
3. iid samples from Bernoulli(0.5,0.5) on ¢;; = +£1/y/m.
When
m > CSlog(n/S), (20)

with overwhelming probability, the resulting A obeys the RIP. Also note that these designs of the sensing
matrix ® is independent of W. This means that sensing is “universal” and can be done without knowing
what is the sparse basis ¥ of the signal (of course, one needs to know ¥ during recovery).

3 Matrix Completion

Let M be an n; X ng matrix of rank r. Suppose we observe m entries of M. How large does m have to be
to recover M7 We will show that it is a small number. However, there are a few conditions.

Note the observed entries cannot be adversarially placed — if we miss a whole row when M is rank-1 outer
product, there is no way to recover M. Therefore, one assumes that the locations are sampled uniformly at
random.

It is not enough for M to be low rank. Consider M = eje] . It is very difficult to hit the 1 by chance.
Instead, we consider the following family of M’s.

Definition 1 Let U be a subspace of R™ of dimension r, and Py be the orthogonal projection onto U. Then

the coherence of U is defined as
_n 112
p(U) = - max || Puei|”. (21)

We are interested in low coherence subspaces. Let the SVD of M be
M = Z Ukukv,j (22)
k=1
with column and row spaces be U and V, respectively. The M we consider has two properties:
1. The coherence max(u(U), u(V)) < po for some positive fi;

2. The ni X ny matrix 22:1 ukv,;r has a maximum entry bounded by p1+/7/(n1n2) in absolute value for
some positive .
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For such M, we have the following theorem.

Theorem 5 Let M be an ni X no matriz of rank r satisfying the above two conditions. Suppose we observe
m entries with locations sampled uniformly at random. Then there exist constants C,c such that if

m > Cmax(u3, u(l)/Qul, ponYnr(Blogn) (23)

for some 3 > 2, then the minimizer to the nuclear norm minimization problem

i X[« 24
oo o [IX] (24)
s.t. Xij = M;j for observed locations (i,7j) (25)

is unique and equal to M with probability at least 1 — en=%. Forr < ualnl/s the bound can be improved to
m > Cpon®/°r(Blogn) (26)
with the same probability of success.

Here, the nuclear norm || X ||, = >";_, oy is the sum of singular values of X. It is a convex approximation to
the rank of X, i.e., the number of nonzero singular values. When X is symmetric and positive semi-definite,
its nuclear norm is the same as its trace.
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