Modern machine learning is rooted in statistics. You will find many familiar concepts here with a different name.

1 Parametric vs. Nonparametric Statistical Models

A statistical model \mathcal{H} is a set of distributions. A parametric model is one that can be parametrized by a finite number of parameters. We write the PDF $f(x) = f(x; \theta)$ to emphasize the parameter $\theta \in \mathbb{R}^d$. In general, $\mathcal{H} = \{f(x; \theta) : \theta \in \Theta \subset \mathbb{R}^d\}$ (1)

where Θ is the parameter space. We will often use the notation

$$E_\theta(g) = \int_x g(x)f(x; \theta)\,dx$$

(2)

to denote the expectation of a function g with respect to $f(x; \theta)$. Note the subscript in E_θ does not mean integrating over all θ.

Example 1 Consider the parametric model $\mathcal{H} = \{N(\mu, 1) : \mu \in \mathbb{R}\}$. Given iid data x_1, \ldots, x_n, the optimal estimator of the mean is $\hat{\mu} = \frac{1}{n} \sum x_i$.

A nonparametric model is one which cannot be parametrized by a fixed number of parameters.

Example 2 Consider the nonparametric model $\mathcal{H} = \{P : Var_P(X) < \infty\}$. Given iid data x_1, \ldots, x_n, the optimal estimator of the mean is again $\hat{\mu} = \frac{1}{n} \sum x_i$.

Example 3 In a naive Bayes classifier we are interested in computing the conditional $p(y|x; \theta) \propto p(y; \theta) \prod_d p(x_i|y; \theta)$. Is this a parametric or nonparametric model? The model is specified by $\mathcal{H} = \{p(x, y; \theta)\}$ where θ contains the parameter for the class prior multinomial distribution $p(y)$ (finite number of parameters), and the class conditional distributions $p(x_i|y)$ for each dimension. The latter can be parametric (such as a multinomial over the vocabulary, or a Gaussian), or nonparametric (such as 1D kernel density estimation). Therefore, naive Bayes can be either parametric or nonparametric, although in practice the former is more common.

In machine learning we are often interested in a function of the distribution $T(F)$, for example, the mean. We call T the statistical functional, viewing F the distribution itself a function of x. However, we will also abuse the notation and say $\theta = T(F)$ is a “parameter” even for nonparametric models.

2 Estimation

Given $X_1 \ldots X_n \sim F \in \mathcal{H}$, an estimator $\hat{\theta}_n$ is any function of $X_1 \ldots X_n$ that attempts to estimate a parameter θ.

An estimator is consistent if

$$\hat{\theta}_n \xrightarrow{P} \theta.$$ (3)
Because $\hat{\theta}_n$ is a random variable, we can talk about its expectation:

$$E_{\theta}(\hat{\theta}_n)$$

(4)

where E_{θ} is w.r.t. the joint distribution $f(x_1, \ldots, x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$. Then, the bias of the estimator is

$$\text{bias}(\hat{\theta}_n) = E_{\theta}(\hat{\theta}_n) - \theta.$$

(5)

An estimator is unbiased if $\text{bias}(\hat{\theta}_n) = 0$. The standard error of an estimator is

$$\text{se}(\hat{\theta}_n) = \sqrt{\text{Var}_{\theta}(\hat{\theta}_n)}.$$

(6)

The mean squared error of an estimator is

$$\text{mse}(\hat{\theta}_n) = E_{\theta}((\hat{\theta}_n - \theta)^2).$$

(7)

Theorem 1 $\text{mse}(\hat{\theta}_n) = \text{bias}^2(\hat{\theta}_n) + \text{se}^2(\hat{\theta}_n) = \text{bias}^2(\hat{\theta}_n) + \text{Var}_{\theta}(\hat{\theta}_n).$

3 Maximum Likelihood

For parametric statistical models, a common estimator is the **maximum likelihood estimator**. Let x_1, \ldots, x_n be iid with PDF $f(x; \theta)$ where $\theta \in \Theta$. The likelihood function is

$$L_n(\theta) = f(x_1, \ldots, x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta).$$

(8)

The log likelihood function is $\ell_n(\theta) = \log L_n(\theta)$. The maximum likelihood estimator (MLE) is

$$\hat{\theta}_n = \arg\max_{\theta \in \Theta} L_n(\theta) = \arg\max_{\theta \in \Theta} \ell_n(\theta).$$

(9)

Example 4 The MLE for $p(\text{head})$ from n coin flips is $\text{count(head)}/n$, sometimes called “estimating probability by the frequency.” This is also true for multinomials. The MLE for $X_1, \ldots, X_N \sim N(\mu, \sigma^2)$ is $\hat{\mu} = 1/n \sum X_i$ and $\hat{\sigma}^2 = 1/n \sum (X_i - \hat{\mu})^2$. These agree with our intuition. However, the MLE does not always agree with intuition. For example, the MLE for $X_1, \ldots, X_n \sim \text{uniform}(0, \theta)$ is $\hat{\theta} = \max(X_1, \ldots, X_n)$. You would think θ is larger, no?

The MLE has several nice properties. The Kullback-Leibler divergence between two PDFs is

$$KL(f\|g) = \int f(x) \log \left(\frac{f(x)}{g(x)} \right) \, dx.$$

(10)

The model H is identifiable if $\forall \theta, \psi \in \Theta, \theta \neq \psi$ implies $KL(f(x; \phi)\|f(x; \psi)) > 0$. That is, different parameters correspond to different PDFs.

Theorem 2 When H is identifiable, under certain conditions (see Wasserman Theorem 9.13), the MLE $\hat{\theta}_n \overset{P}{\to} \theta^*$, where θ^* is the true value of the parameter θ. That is, the MLE is consistent.

Given n iid observations, the **Fisher information** is defined as

$$I_n(\theta) = nE_{\theta} \left[\left(\frac{\partial}{\partial \theta} \ln f(X; \theta) \right)^2 \right] = -nE_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \ln f(X; \theta) \right]$$

(11)
Example 5 Consider n iid observations $x_i \in \{0, 1\}$ from a Bernoulli distribution with true parameter p. $f(x; p) = p^x (1 - p)^{1-x}$. It follows that $\frac{\partial^2}{\partial \theta^2} \ln f(X; \theta)$, evaluated at p, is $-x/p^2 - (1-x)/(1-p)^2$. Taking the expectation over x under $f(x; p)$ and multiply by $-n$, we arrive at $I_n(p) = \frac{n}{p(1-p)}$.

Theorem 3 (Asymptotic Normality of the MLE). Let $se = \sqrt{\text{Var}_\theta(\hat{\theta}_n)}$. Under appropriate regularity conditions, $se \approx \frac{1}{\sqrt{I_n(\theta)}}$, and
$$\frac{\hat{\theta}_n - \theta}{se} \sim N(0, 1).$$ \hspace{1cm} (12)

Furthermore, let $\hat{se} = \sqrt{1/I_n(\hat{\theta}_n)}$. Then
$$\frac{\hat{\theta}_n - \theta}{\hat{se}} \sim N(0, 1).$$ \hspace{1cm} (13)

Theorem 4 (Cramér-Rao Lower Bound) Let $\hat{\theta}_n$ be any unbiased estimator (not necessarily the MLE) of θ. Then the variance is lower bounded by the inverse Fisher information:
$$\text{Var}_\theta(\hat{\theta}_n) \geq \frac{1}{I_n(\theta)}.$$ \hspace{1cm} (14)

The Fisher information can be generalized to the high dimensional case. Let θ be a parameter vector. The Fisher information matrix has i, jth element
$$I_{ij}(\theta) = -\mathbb{E} \left[\frac{\partial^2 \ln f(X; \theta)}{\partial \theta_i \partial \theta_j} \right].$$ \hspace{1cm} (15)

An unbiased estimator that achieves the Cramér-Rao lower bound is said to be efficient. It is asymptotically efficient if it achieves the bound as $n \to \infty$.

Theorem 5 The MLE is asymptotically efficient.

4 Bayesian Inference

The statistical methods discussed so far are frequentist methods:

- Probability refers to limiting relative frequency.
- Data are random.
- Estimators are random because they are functions of data.
- Parameters are fixed, unknown constants not subject to probabilistic statements.
- Procedures are subject to probabilistic statements, for example 95% confidence intervals traps the true parameter value 95

An alternative is the Bayesian approach:

- Probability refers to degree of belief.
- Inference about a parameter θ is by producing a probability distributions on it. Typically, one starts with a prior distribution $p(\theta)$. One also chooses a likelihood function $p(x \mid \theta)$ – note this is a function of θ, not x. After observing data x, one applies the Bayes Theorem to obtain the posterior distribution $p(\theta \mid x)$:
$$p(\theta \mid x) = \frac{p(x \mid \theta) p(\theta)}{\int p(x \mid \theta') p(\theta') d\theta'} \propto p(x \mid \theta),$$ \hspace{1cm} (16)
where \(Z \equiv \int p(\theta')p(x \mid \theta')d\theta' \) is known as the normalizing constant. The posterior distribution is a complete characterization of the parameter.

Sometimes, one uses the mode of the posterior as a simple point estimate, known as the maximum a posteriori (MAP) estimate of the parameter:

\[
\theta^{MAP} = \arg\max_{\theta} p(\theta \mid x).
\]

Note MAP is not a proper Bayesian approach.

- Prediction under an unknown parameter is done by integrating it out:
 \[
p(x \mid Data) = \int p(x \mid \theta)p(\theta \mid Data)d\theta.
 \]

Example 6 Let \(\theta \) be a \(d \)-dim multinomial parameter. Let the prior be a Dirichlet \(p(\theta) = \text{Dir}(\alpha_1, \ldots, \alpha_d) \).

The likelihood is multinomial \(p(x \mid \theta) = \text{Multi}(x \mid \theta) \), where \(x \) is a “training” count vector. These two distributions are called conjugate to each other as the posterior is again Dirichlet:

\[
p(\theta \mid x) = \text{Dir}(\alpha_1 + x_1, \ldots, \alpha_d + x_d).
\]

Now let’s look into the predictive distribution for some “test” count vector \(x' \). If \(\theta \sim \text{Dir}(\beta) \), the result of integrating \(\theta \) out is

\[
p(x' \mid \beta) = \int p(x' \mid \theta)p(\theta \mid \beta)d\theta
= \frac{(\sum_k x'_k)!}{\prod_k (x'_k)!} \frac{\Gamma(\sum_k \beta_k)}{\Gamma(\sum_k \beta_k + x'_k)} \prod_k \frac{\Gamma(\beta_k + x'_k)}{\Gamma(\beta_k)}
\]

This is an example where the integration has a happy ending: it has a simple(?) closed-form. This is known as a Dirichlet compound multinomial distribution, also known as a multivariate Pólya distribution.

Where does the prior \(p(\theta) \) come from?

- Ideally it comes from domain knowledge. One major advantage of Bayesian approaches is the principled way to incorporate prior knowledge in the form of the prior.

- Non-informative, or flat, prior, where there does not seem to be a reason to prefer any particular parameter. This may however create improper priors. Let \(X \sim N(\theta, \sigma^2) \) with \(\sigma^2 \) known. A flat prior \(p(\theta) \propto c > 0 \) would be improper because \(\int p(\theta)d\theta = \infty \), so it is not a density. Nonetheless, the posterior distribution is well-defined.

 A flat prior is not transformation invariant. Jeffrey’s prior \(p(\theta) \propto I(\theta)^{1/2} \) is.

- It should be pointed out that in practice, the choice of prior is often dictated by computational convenience, in particular conjugacy.