CS731 Spring 2011 Advanced Artificial Intelligence

Variational Methods

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

In this lecture we consider variational methods in inference (sum-product and mean field) and parameter
learning (variational EM).

1 Inference: Variational Approximations

Recall that given 6, one can perform inference (equivalent to computing the mean parameters) by solving
an optimization problem:

A(6) = sup p'o—A*(w), (1)

using the fact that the solution is attained uniquely at the desired mean parameter

= Eq[o(x)]. (2)

This is known as the variational principle, where a desired quantity (in this case u) is defined as a solution
to an optimization problem. However, in general is difficult to solve even though it is a convex problem.
Variational approximation aims to modify the optimization problem so that it is tractable, at the price of
arriving at an approximate solution. We will interpret mean field and sum-product algorithms as different
variational approximations to (T)).

1.1 The Mean Field Method as Variational Approximation

In general, there are two difficulties with : (1) the marginal polytope M, albeit convex, can be quite
complex to describe and optimize over; (2) The dual function A*(u) does not admit an explicit form. The
mean field method replaces M with a subset M (F') which is simple and on which A*(u) has a closed form.

Recall that the original exponential family is defined over a graph G = (V, E). Now consider the fully
disconnected subgraph F' = (V, (). This subgraph defines a sub-family

QF)={0 €20, =0if ¢; involves edges not in F}. (3)

The densities in this sub-family are all fully factorized:

po(x) = H p(s;0s). (4)

seV

F could also be a spanning tree of G or other tractable subgraphs, but we do not consider those cases here.

Clearly, Q(F) maps to a subset of M, call it M(F). Recall when {x} is finite, M is characterized by the
convex hull of extreme points {¢(x)}. Each particular extreme point ¢(x) in M is realized by a distribution
p that puts all mass on x. Now we claim that these extreme points are also in M(F).

Example 1 For the tiny Ising model x1,2o € {0,1} with ¢ = (x1,29,T122)", the point mass probability
p(x = (0,1)7) = 1 is realized as a limit to the series p(x) = exp(61x1 + Ooxa — A(0)) where 6; — —oo and
02 — o0o. Note this series is in Q(F) because 612 = 0. Therefore, the point mass probability on x = (0,1)7 is
realizable by QU(F) and hence the extreme point ¢p(x) = (0,1,0) is in M(F). The same is true for the other
three extreme points.
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Because the extreme points of M are in M(F), if the latter were convex, we would have M = M(F).
Therefore, whenever M(F) is a true subset of M (the general case), M(F) cannot be convex. Instead,
M(F) is a nonconvex inner set of M.

The mean field method is defined simply by replacing M with M(F) in (T)):

L(O)= sup pu'0— A*(n), (5)
HEM(F)

Obvious £(¢) < A(f). The solution that achieves £(f) may not be the mean parameter x (2)), depending
on whether that 4 € M(F) or not. Furthermore, even when that yu € M(F'), because M(F') is nonconvex,
in practice we may not be able to find it (instead we might get stuck in a local maximum). Therefore, the
mean field problem is fraught with difficulties. Then, why would one want to use the mean field method?
The key lies in the fact that A*(u) = —H(pe(n)) has a very simple form for p € M(F), as the following
example shows.

Example 2 (Mean Field for Ising Model) Recall that the Ising model has mean parameters which are
the node and edge marginals: ps = p(zz = 1), use = p(zs = L,z = 1). Since M(F') corresponds to the
fully factorized product distributions , its mean parameters are simply defined by the ps’s, with the edge
marginals begin ps = pspe. For such p’s, the dual function A*(u) = —H (pg(1)) has the simple form

A*(‘LL) = Z 7H(Ns) = Z s log ps + (1 - /Ls) log(l - ,LLS). (6)

seV seV

Thus the mean field problem (p)) can be written as

LO) = sup p 60— (uslogpus + (1 — ps)log(l— p,)) (7)
HEM(F) seV

max Z Ospis + Z Ostprspis + Z H(ps) (8)
seV

oot ) €[0,1]™
(k1. ) E€[0,1] (s.0)eE sev

This is a concave problem in a single dimension ps. An iterative coordinate-wise mazximization (fixing
ue fort # s and optimizing ps) procedure can be derived by setting the partial derivative w.r.t. ps to 0. This
yields the update

o = ! (9)

1+ exp (7(6‘S + Z(s,t)EE astﬂt))
We therefore derived the mean field algorithm for Ising model in a previous lecture.
However, (8) is not jointly concave in ji1 ... pm. Therefore, the iterative procedure will converge to a local
mazimum of (8)) depending on the initialization of 1 ... pm. It may not reach the lower bound L(0) (though
it is guaranteed to produce a lousier lower bound).

% To see how a function that is concave in each dimension may not be concave jointly, consider
[l y) = ay.

1.2 The Sum-Product Algorithm as Variational Approximation

The sum-product algorithm makes two approximations to the variational problem : it relaxes M to an
outer set, and replaces the dual A* with an approximation.

Recall that for standard overcomplete exponential families on discrete nodes, the mean parameter is
= (.. psj.. fstjk--.) € R‘i where ps; = p(as = j), pstjr = p(xs = j,x+ = k). The marginal polytope is
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M = {u | Ip with node and edge marginals ;}. Now consider non-negative vectors 7 € R‘i satisfying the
following conditions:

r—1
ZTsj =1 VseV (10)
j=0
ZTstjk-:Tsj Vs,teV,j=0...r—1 (11)
ZTstjk:Ttk Vs, t € V,k=0...r — 1. (12)

These can be understood as node normalization and edge-node marginal consistency conditions, respectively.
Now define L = {7 satisfying the above conditions}. Clearly M C L. It turns out if the graph has a tree
structure, then M = L. But if the graph has cycles then M C L (i.e., L is too lax to satisfy some other
constraints that true marginals need to satisfy; see example 4.1 in Wainwright & Jordan). However, L is a
much simpler set than M. The first approximation in sum-product is to replace M with L in the variational
problem .

The second approximation is on A* = —H(p). First we point out that if the graph is a tree, one can
exactly reconstruct the joint probability p,, from g (which only specifies node and edge marginals) as follows:
Hsta,
pp, H Msz g B (13)
seV (s,t)eE Hszs Hia,

And when the graph is a tree, the entropy of the joint distribution above is easy to compute:

H(p,) = —A"(w) (14)
= > Hps)— > Ipst) (15)
seVvV (s,t)EE
r—1
= _ZZMstOg,Usj_ Z Z/-Lst]kk)g St]k' (16)
seV j=0 (s,t)EE j,k

Note neither nor holds for graph with cycles. Nonetheless, we define the Bethe entropy for 7 € L
on loopy graphs in the same way:

HBethe pT = ZZTS] IOgng - Z ZTstjk 10g Jstjh . (17)

sj Ttk
seV j=0 (s,t)eE j,k

Recall that 7 is not a true marginal, and Hpeipe is not a true entropy. The second approximation in
sum-product is to replace A*(7) with —Hpethe(Dr)-
With these two approximations, we arrive at a different variational problem than :

Asumfproduct(e) - Sulz TTG + HBethe (P'r) (18)
TE

This is a constrained optimization problem with constraints 7 € L. Optimality conditions require that the
gradients vanish w.r.t. both the primal variables 7 and the Lagrangian multipliers on those constraints. The
sum-product algorithm can be derived as an iterative fixed point procedure to achieve optimality. Details
can be found in section 4.1.3 in Wainwright & Jordan. At the solution, Asum—product(#) is not guaranteed
to be either an upper or a lower bound of A(#), and 7 may not correspond to a true marginal distribution.
They are approximations.
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2 Parameter Learning: Variational Interpretation of EM for Ex-
ponential Families

So far, we have focused on the inference problem where the parameter 6 is fixed. In what follows, we address
the learning problem where the parameter is unknown and must be estimated from iid data x; ...x,. The
underlying principle will be maximum likelihood. We distinguish the case where we have fully observed data

where all dimensions of x are observed, from the case where we have partially observed data where some
dimensions of x are unobserved.

2.1 Fully Observed Data
We consider exponential family pg(x) = exp (9T¢(x) — A(G)). Given iid data x; . ..x,, the log likelihood is

€0 ZIOgPO X;) = =0" < Z¢ X ) - )Z@Tﬂ—A(Q), (19)

=1

where i = % >, ¢(x;) is the mean parameter of the empirical distribution on X ...x,. Clearly i € M.
The maximum likelihood principle seeks

OMLE = argsup ' i — A(6). (20)
6eQ
As stated earlier, the solution is
oML = (), (21)

i.e., the exponential family density whose mean parameter matches ji. When /i € M and ¢ minimal, there
is a unique maximum likelihood solution #™ . The value of the log likelihood function ¢(§M1) = A* (1) =

—H(ngL).
2.2 Partially Observed Data

We assume that the value of some nodes in the graphical model are unobserved. We denote each input
item as (x,z) where x is the observed part and z the unobserved part. That is, the full data would be
(x1,21) ... (Xn,2,) but we only observe partial data x; ... x,ﬂ One can still learn parameters using the
maximum likelihood principle on

= % Z log pe(x;). (22)

However, the difficulty stems from the fact that pp(x;) is now the marginal over observed variables (note
¢(x,z) is defined over the complete data):

po(x;) = /pg(xi,z)dz = /exp (QTQS(X,Z) — A(0)) dz. (23)

In this case, we call £(6) the incomplete log likelihood:

Zlog/exp To(xi,z) — A(9)) dz = ( Zlog/exp T (%, z)) dz) — A(0) (24)

EM maximizes a lower bound of the incomplete log likelihood. First consider the conditional probability
exp(07 ¢(xi,z) — A(6))
Jexp(0T ¢(xi,2') — A(0))dz"~

IEach item can have different missing variables and everything follows exactly the same. For notational simplicity we do
not consider that here.

po(z | xi) = (25)




Variational Methods 5

Note this is (of course) an exponential family too, since it can be written as
pata | x) = exp (07 602) — og [ expl07 6001208 ) = exp (07 6(x.9) ~ A (@) (26)
where we defined a new log partition function for this conditional probability conditioned on x;:
Ax. (0) = log/exp(GTqS(xi,z’))dz'. (27)

With this, can be written as
D Ak (0) — A(0) (28)

We now lower-bound each Ay, (6) using variational principle. Consider the mean parameter realizable by
any distribution on z while holding x; fixed:

My, = {p €R? | = E,[p(x;,2)] for some p}. (29)
Recall that the variational definition of Ay, (0) is

Ay, (0) = sup 07— A% (w). (30)
HEMx,

Therefore, for any u’ € My, we have the trivial variational lower bound
Ax, () 2 0T — A% (1), (31)

This translates to a lower bound £ on the incomplete log likelihood:

(o) > (071" = Ay (1) = A(0) = L(p', ..., 1", 0). (32)

n
1
n

i=1

2.2.1 Exact EM

The EM algorithm is coordinate ascent on £. In the E step, it optimizes each p! in turn for i = 1...n, fixing
all other variables: ‘
p'—arg max L(p',...,p5"0). (33)
HFEM,
The maximization problem on the RHS is equivalent to
argmax i aq, 0t — AL (1h). (34)

We recognize the argmax as the variational representation of the mean parameter

1 (0) = Eo[o(xi, 2)]. (35)

It is this Eg[] operation, under the current parameters 6, that earned it the name “E step.” In the M step,
it optimizes 6, holding the p’s fixed:

— 1 n — TaA
0 argrgleagﬁ(u NN )| argrgleag@ o — A(9), (36)

where we define

/:t:

> (37)

S|
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We recognize this as the standard fully observed maximum likelihood problem, hence the name “M step.”
The solution is attained at (/i) which satisfies the condition

Eg(py[p(x)] = fi. (38)

Furthermore, at the end of E step these pi.,, achieve equality in the variational lower bound (31).
Hence the lower bound £ in is tight at this moment:

K(HOZd) = ‘C’(tuvlzew’ e 7”2611)7 HOld)' (39)

Therefore, if a subsequent solution 6,,¢,, to the M step improves upon £(ul ..., - - - s 170 fo1d), it also improves
the incomplete log likelihood:

g(enew) Z E(N}Lew7 e 7#26’[1}’ enew) Z 'C(/u%lzewv e VFLZewﬂ 001d) = 6(00“)' (40)

2.2.2 Variational EM

Recall that for loopy graphs, computing the mean parameter is often intractable, which renders exact
EM impossible. One solution is to use an approximate variational inference algorithm that improves, but not
necessarily maximizes, the quantity in . One such algorithm is the mean field algorithm, which attempts
(up to local maximum) to solve

argmaxweMXi(F)OTui — AL (1h). (41)

Recall the set My, (F') is an inner approximation to My, using an appropriate tractable subgraph F'. Such
“mean field E step” guarantees that the whole procedure is still coordinate ascent on L.
It should be noted that the sum-product algorithm does not enjoy the coordinate ascent property.
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