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Goals for the lecture @

» define the supervised and unsupervised learning tasks

« consider how to represent instances as fixed-length feature
vectors

 understand the concepts
* instance (example)
» feature (attribute)
» feature space
» feature types
model (hypothesis)
training set
supervised learning
classification (concept learning) vs. regression
batch vs. online learning
* i.i.d. assumption
 generalization



Goals for the lecture (continued) @

 understand the concepts
 unsupervised learning
» clustering
« anomaly detection
» dimensionality reduction



Can | eat this mushroom?

| don’t know what type it is — I've never seen
it before. Is it edible or poisonous?



Can | eat this mushroom? )

suppose we're given examples of edible and poisonous mushrooms
(we’ll refer to these as training examples or training instances)

poisonous

can we learn a model that can be used to classify other mushrooms?



Representing using feature vectors @

* we need some way to represent each instance

« one common way to do this: use a fixed-length vector

to represent features (a.k.a. attributes) of each
Instance

» also represent class label of each instance
@
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x =(bell, fibrous, gray, false, foul,...) y® = edible
x®) = (convex,scaly, purple, false, musty,...) y*) = poisonous

x? =(bell, smooth,red, true, musty,...) y* = edible



Standard feature types

« nominal (including Boolean)

* no ordering among possible values
e.g. color € {red, blue, green} (vs. color = 1000 Hertz)

» ordinal

« possible values of the feature are totally ordered
e.g. size & {small, medium, large}

* numeric (continuous)
weight & [0...500]

* hierarchical
* possible values are partially ordered in a hierarchy

e.d. shape — (|osed
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Feature hierarchy example @

Lawrence et al., Data Mining and Knowledge Discovery 5(1-2), 2001
Structure of one feature! Product
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Feature space )

we can think of each instance as representing a point in a d-dimensional feature
space where d is the number of features
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example: optical properties of oceans in three spectral bands
[Traykovski and Sosik, Ocean Optics XIV Conference Proceedings, 1998]



Another view of feature vector

As a single table
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The supervised learning task

problem setting
» set of possible instances: X
« unknown target function: f:X—=Y
- set of models (a.k.a. hypotheses):  H={hlh:X =Y}

given
» training set of instances of unknown target function f

(Xa), y(”), (X<2>, y(2>) (x(’”), y(’”))

output
« model /) e H that best approximates target function



The supervised learning task

* when y is discrete, we term this a classification task
(or concept learning)

* when y is continuous, it is a regression task

* there are also tasks in which each y is more structured
object like a sequence of discrete labels (as in e.g.
iImage segmentation, machine translation)



Batch vs. online learning @

In batch learning, the learner is given the training set as a batch
(i.e. all at once)

(M L,d 2) ,,(2) (m) ,(m)
(0,30} (x®,5@) ... (x,y™)

In online learning, the learner receives instances sequentially, and

updates the model after each (for some tasks it might have to
classify/make a prediction for each x before seeing y® )

(x(” , ya)) (X(2> , y<2)) (Xm , y(”)
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1.1.d. Instances

« we often assume that training instances are independent
and identically distributed (i.i.d.) — sampled independently
from the same unknown distribution

* there are also cases where this assumption does not hold
 cases where sets of instances have dependencies
* instances sampled from the same medical image
* instances from time series
- efc.

» cases where the learner can select which instances are
labeled for training

* active learning
* the target function changes over time (concept drift)



Generalization

» The primary objective in supervised learning is to find a model
that generalizes — one that accurately predicts y for previously
unseen x

Can | eat this mushroom that
was not in my training set?




Model representations

throughout the semester, we will consider a broad range
of representations for learned models, including
* decision trees
 neural networks
 support vector machines
« Bayesian networks
« ensembles of the above
. efc.



Mushroom features (UCI| Repository) @

sunken is one possible value

cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s of the cap-shape feature

cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s

cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y
bruises?: bruises=t,no=f

odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s
gill-attachment: attached=a,descending=d,free=f,notched=n

gill-spacing: close=c,crowded=w,distant=d

gill-size: broad=b,narrow=n

gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=0,pink=p,purple=u,red=e, white=w,yellow=y
stalk-shape: enlarging=e,tapering=t

stalk-root: bulbous=Db,club=c,cup=u,equal=e, rhizomorphs=z,rooted=r,missing="?
stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s

stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s

stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o0, pink=p,red=e,white=w,yellow=y
stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o0, pink=p,red=e,white=w,yellow=y
veil-type: partial=p,universal=u

veil-color: brown=n,orange=0,white=w,yellow=y

ring-number: none=n,one=0,two=t

ring-type: cobwebby=c,evanescent=e,flaring=f,large=I, none=n,pendant=p,sheathing=s,zone=z
spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r, orange=o0,purple=u,white=w,yellow=y
population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y

habitat: grasses=g,leaves=I,meadows=m,paths=p, urban=u,waste=w,woods=d



A learned decision tree

odor = a: e (400.0) —> if odor=almond, predict edible
odor = c: p (192.0)
odor = £f: p (2160.0)
odor = 1l: e (400.0)
odor = m: p (36.0)
odor = n
spore-print-color = b: e (48.0)
spore-print-color = h: e (48.0)
spore-print-color = X: e (1296.0)
spore-print-color = n: e (1344.0)
spore-print-color = o: e (48.0)
spore-print-color = r: p (72.0)
spore-print-color = u: e (0.0) i
spore-print-color = w if odor=none A
gill-size = b: e (528.0) e — -
gill-size = n spore-print-color=white A
gill-spacing = c: p (32.0) > gill-size=narrow A
gill-spacing = d: e (0.0) : S
gill-spacing = w gill-spacing=crowded,
population = a: e (0.0) i i
B opulation = ¢: b (16.0) predict poisonous
population = n: e (0.0)
population = s: e (0.0)
population = v: e (48.0)
population = y: e (0.0)
spore-print-color = y: e (48.0)
odor = p: p (256.0)
odor = s: p (576.0)
odor = y: p (576.0)



Classification with a learned decision tree@

once we have a learned model, we can use it to classify previously
unseen instances

odor = a: e (400.0)
odor = c: p (192.0)
odor = f: p (2160.0)
odor = 1l: e (400.0)
odor = m: p (36.0)
odor = n
spore-print-color = b: e (48.0)
spore-print-color = h: e (48.0)
spore-print-color = k: e (1296.0)
spore-print-color = n: e (1344.0)
spore-print-color = o: e (48.0)
spore-print-color = r: p (72.0) = 1 I 9
spore-print-color = u: e (0.0) y edlble or pOlSOﬂOUS.
spore-print-color = w
gill-size = b: e (528.0)
gill-size = n
gill-spacing = c: p (32.0)
gill-spacing = d: e (0.0)
gill-spacing = w
X = <bell, fibrous, brown, false, foul,...> population = a: & (0.0)
population = c: p (16.0)
population = n: e (0.0)
population = s: e (0.0)
population = v: e (48.0)
population = y: e (0.0)
spore-print-color = y: e (48.0)

odor = p: p (256.0)
odor = s: p (576.0)
odor = y: p (576.0)



Unsupervised learning

in unsupervised learning, we're given a set of instances, without y’s

(D «(2) (m)

X, X . X

goal: discover interesting regularities/structures/patterns that
characterize the instances

common unsupervised learning tasks
» clustering

« anomaly detection
» dimensionality reduction



Clustering

given

» training set of instances xV

(2) (m)

, XX

output

« model s e H that divides the training set into clusters such that there
is intra-cluster similarity and inter-cluster dissimilarity



Clustering example

Petal lengt,

Clustering irises using three different features (the colors represent
clusters identified by the algorithm, not y’s provided as input)



Anomaly detection

learning _

task

performance
===

task

gm—

gm—

given

° . . . 1 2

training set of instances  xV x®  x

output

« model /h e Hthat represents “normal” X
given

* a previously unseen X
determine

if x looks normal or anomalous

(m)



Anomaly detection example

Arctic Sea Ice Extent
(Area of ocean with at least 15% sea ice)
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Let’'s say our model is represented by: 1979-2000 average, £2 stddev
Does the data for 2012 look anomalous?



Dimensionality reduction

given
- training set of instances  xV x® = x™

output

« model s € H that represents each X with a lower-dimension feature
vector while still preserving key properties of the data



Dimensionality reduction example

We can represent a face using all of the
pixels in a given image

More effective method (for many tasks): 3 ={
represent each face as a linear
combination of eigenfaces




Dimensionality reduction example

represent each face as a linear combination of eigenfaces
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# of features is now 20 instead of # of pixels in images
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Other learning tasks @

later in the semester we'll cover other learning tasks that are
not strictly supervised or unsupervised

* reinforcement learning
* semi-supervised learning
« eflc.
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Some of the slides in these lectures have been adapted/b.orrowed
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