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Zoo of machine learning models

This is a joke



The lectures ahead
organized according to different machine learning 
models/methods

1. supervised learning
• non-parametric: decision tree, nearest neighbors
• parametric

• discriminative: linear/logistic regression, SVM, NN
• generative: Naïve Bayes, Bayesian networks

2. unsupervised learning: clustering, dimension reduction
3. reinforcement learning
4. other settings: ensemble, active, semi-supervised

intertwined with experimental methodologies, theory, etc.
1. evaluation of learning algorithms
2. learning theory: PAC, bias-variance, mistake-bound
3. feature selection



Goals for this lecture
you should understand the following concepts

• the decision tree representation
• the standard top-down approach to learning a tree
• Occam’s razor
• entropy and information gain
• test sets and unbiased estimates of accuracy
• overfitting
• early stopping and pruning
• validation sets
• regression trees
• probability estimation trees



Decision Tree 
Representation



A decision tree to predict heart disease 
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node 
represents one outcome of the test

Each leaf predicts y or P(y | x)



Decision tree exercise
Suppose X1 … X5 are Boolean features, and Y is also Boolean

How would you represent the following with decision trees?
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Decision Tree Learning



History of decision tree learning

dates of seminal publications: work on these 
2 was contemporaneous

many DT variants have been 
developed since CART and ID3
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CART developed by Leo Breiman, Jerome 
Friedman, Charles Olshen, R.A. Stone

ID3, C4.5, C5.0 developed by Ross Quinlan



Top-down decision tree learning

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria met

make a leaf node N

determine class label/probabilities for N

else

make an internal node N

S = FindBestSplit(D, C)

for each outcome k of S

Dk = subset of instances that have outcome k

kth child of N = MakeSubtree(Dk)

return subtree rooted at N



Candidate splits in ID3, C4.5
• splits on nominal features have one branch per value

• splits on numeric features use a threshold

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false



Candidate splits on numeric features

weight ≤ 35

true false

weight

17 35

given a set of training instances D and a specific feature Xi

• sort the values of Xi in D
• evaluate split thresholds in intervals between instances of 

different classes

• could use midpoint of each considered interval as the threshold
• C4.5 instead picks the largest value of Xi in the entire training set that does not 

exceed the midpoint



Candidate splits on numeric features
(in more detail)

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature Xi)
C = {} // initialize set of candidate splits for feature Xi

S = partition instances in D into sets s1 … sV where the instances in each    
set have the same value for Xi

let vj denote the value of Xi for set sj

sort the sets in S using vj as the key for each sj

for each pair of adjacent sets sj, sj+1 in sorted S
if sj and sj+1 contain a pair of instances with different class labels

// assume we’re using midpoints for splits

add candidate split Xi ≤ (vj + vj+1)/2 to C

return C



Candidate splits
• instead of using k-way splits for k-valued features, could 

require binary splits on all discrete features (CART does this)

thal

normal reversible_defect∨ fixed_defect

color

red ∨blue green ∨ yellow



Finding The Best Splits



Finding the best split

• How should we select the best feature to split on at each step?

• Key hypothesis: the simplest tree that classifies the training instances 
accurately will work well on previously unseen instances



Occam’s razor

• attributed to 14th century William of Ockham

• “Nunquam ponenda est pluralitis sin necesitate”

• “Entities should not be multiplied beyond necessity”

• “when you have two competing theories that make exactly the same 
predictions, the simpler one is the better”



But a thousand years earlier, 
I said, “We consider it a good
principle to explain the 
phenomena by the simplest 
hypothesis possible.”



Occam’s razor and decision trees

• there are fewer short models (i.e. small trees) than 
long ones

• a short model is unlikely to fit the training data well 
by chance

• a long model is more likely to fit the training data well 
coincidentally

Why is Occam’s razor a reasonable heuristic for 
decision tree learning?



Finding the best splits

• Can we find and return the smallest possible decision tree 
that accurately classifies the training set?

• Instead, we’ll use an information-theoretic heuristic to 
greedily choose splits

NO! This is an NP-hard problem
[Hyafil & Rivest, Information Processing Letters, 1976]



Information theory background

• consider a problem in which you are using a code to communicate 
information to a receiver

• example: as bikes go past, you are communicating the manufacturer 
of each bike 



Information theory background

• suppose there are only four types of bikes
• we could use the following code

11

10

01

00

• expected number of bits we have to communicate:  
2 bits/bike

Trek

Specialized

Cervelo

Serrota

type code



Information theory background
• we can do better if the bike types aren’t equiprobable
• optimal code uses                    bits for event with 

probability
− log2 P(y)

P(y)

1

  

€ 

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code

• expected number of bits we have to communicate:  
1.75 bits/bike
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Entropy
• entropy is a measure of uncertainty associated with a 

random variable

• defined as the expected number of bits required to 
communicate the value of the variable

entropy function for
binary variable

å
Î

-=
)(values

2 )(log)()(
Yy

yPyPYH



Conditional entropy

• What’s the entropy of Y if we condition on some other 
variable X?

where

𝐻(𝑌|𝑋) = ( 𝑃(𝑋 = 𝑥)𝐻(𝑌|𝑋 = 𝑥)
�

,∈values(4)

𝐻(𝑌|𝑋 = 𝑥) = − ( 𝑃(𝑌 = 𝑦|𝑋 = 𝑥) log9 𝑃 (𝑌 = 𝑦|𝑋 = 𝑥)
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Information gain (a.k.a. mutual information)

• choosing splits in ID3: select the split S that most reduces 
the conditional entropy of Y for training set D

 InfoGain(D,S) = HD (Y )− HD (Y | S)

D indicates that we’re calculating probabilities 
using the specific sample D



Relations between the concepts

Figure from wikipedia.org



Information gain example 



Information gain example 

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• What’s the information gain of splitting on Humidity?
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Information gain example 

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• Is it better to split on Humidity or Wind?

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD (Y | strong) = 1.0

✔
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One limitation of information gain

• information gain is biased towards tests with many 
outcomes

• e.g. consider a feature that uniquely identifies each 
training instance

• splitting on this feature would result in many branches, each of 
which is “pure” (has instances of only one class)

• maximal information gain!



Gain ratio
• to address this limitation, C4.5 uses a splitting criterion 

called gain ratio

• gain ratio normalizes the information gain by the entropy of 
the split being considered

GainRatio(D,S) = InfoGain(D,S)
HD (S)

=
HD (Y )−HD (Y | S)

HD (S)



Stopping criteria

We should form a leaf when
• all of the given subset of instances are of the same class
• we’ve exhausted all of the candidate splits

Is there a reason to stop earlier, or to prune back the tree?



How to assess the accuracy of a tree?
• can we just calculate the fraction of training instances 

that are correctly classified?

• consider a problem domain in which instances are 
assigned labels at random with P(Y = t) = 0.5

• how accurate would a learned decision tree be on 
previously unseen instances?

• how accurate would it be on its training set?



How can we assess the accuracy of a tree?
• to get an unbiased estimate of a learned model’s 

accuracy, we must use a set of instances that are held-
aside during learning

• this is called a test set

all instances

test

train



Overfitting



Overfitting
• consider error of model h over

• training data:
• entire distribution of data:

• model           overfits the training data if there is an 
alternative model            such that

 errorD(h)

 errorD (h)

 errorD (h) > errorD (h ')

 errorD(h) < errorD(h ')

HhÎ
Hh Î'



Example 1: overfitting with noisy data
suppose

• the target concept is 
• there is noise in some feature values
• we’re given the following training set 

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy value

21 XXY Ù=



Example 1: overfitting with noisy data

X1

X2

T F

X3t

f

f

f

X4

t

X1

X2

T F

t f

f

correct tree tree that fits noisy training data



Example 2: overfitting with noise-free data
suppose

• the target concept is 
• P(X3 = t) = 0.5 for both classes
• P(Y = t) = 0.67
• we’re given the following training set 

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t t f t … t

t t t t f … t

t f f t f … f

f t f f t … f

21 XXY Ù=



Example 2: overfitting with noise-free data

X3

T F

t f

t

training set
accuracy

test set
accuracy

100%

66% 66%

50%

• because the training set is a limited sample, there might 
be (combinations of) features that are correlated with 
the target concept by chance



Overfitting in decision trees



Example 3: regression using polynomial

𝑡	 = sin(2𝜋𝑥) + 𝜖

Figure from Machine Learning 
and Pattern Recognition, Bishop



Regression using 
polynomial of 

degree M

𝑡	 = sin(2𝜋𝑥) + 𝜖

Example 3: regression using polynomial



𝑡	 = sin(2𝜋𝑥) + 𝜖

Example 3: regression using polynomial



𝑡	 = sin(2𝜋𝑥) + 𝜖

Example 3: regression using polynomial



𝑡	 = sin(2𝜋𝑥) + 𝜖

Example 3: regression using polynomial



Example 3: regression using polynomial



General phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville



Prevent overfitting
• cause: training error and expected error are different

1. there may be noise in the training data 

2. training data is of limited size, resulting in difference from the true 
distribution 

3. larger the hypothesis class, easier to find a hypothesis that fits the 
difference between the training data and the true distribution 

• prevent overfitting:

1. cleaner training data help!

2. more training data help!

3. throwing away unnecessary hypotheses helps! (Occam’s Razor)



Avoiding overfitting in DT learning

two general strategies to avoid overfitting
1. early stopping: stop if further splitting not justified by 

a statistical test
• Quinlan’s original approach in ID3

2. post-pruning: grow a large tree, then prune back 
some nodes
• more robust to myopia of greedy tree learning



Pruning in C4.5

1. split given data into training and validation 
(tuning) sets

2. grow a complete tree
3. do until further pruning is harmful

• evaluate impact on tuning-set accuracy of 
pruning each node

• greedily remove the one that most improves 
tuning-set accuracy



Validation sets
• a validation set (a.k.a. tuning set) is a subset of the training set  that is 

held aside
• not used for primary training process (e.g. tree growing)
• but used to select among models (e.g. trees pruned to varying 

degrees)

all instances

testtrain

tuning



Variants



Regression trees

X5 > 10

X3

X2 > 2.1Y=5

Y=24Y=3.5

Y=3.2

• in a regression tree, leaves have functions that predict 
numeric values instead of class labels

• the form of these functions depends on the method
• CART uses constants
• some methods use linear functions

X5 > 10

X3

X2 > 2.1Y=2X4+5

Y=3X4+X6

Y=3.2

Y=1



Regression trees in CART

• CART does least squares regression which tries to 
minimize

target value for ith

training instance
value predicted by tree for ith training 
instance (average value of y for training 
instances reaching the leaf)

• at each internal node, CART chooses the split that most 
reduces this quantity
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Probability estimation trees

X5 > 10

X3

P(Y=pos) = 0.5
P(Y=neg) = 0.5

P(Y=pos) = 0.1
P(Y=neg) = 0.9

P(Y=pos) = 0.8
P(Y=neg) = 0.2

• in a PE tree, leaves estimate the probability of each 
class

• could simply use training instances at a leaf to 
estimate probabilities, but …

• smoothing is used to make estimates less extreme 
(we’ll revisit this topic when we cover Bayes nets)

D: [3+, 3-] D: [0+, 8-]

D: [3+, 0-]



m-of-n splits
• a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91]
• each split is constructed using a heuristic search process
• this can result in smaller, easier to comprehend trees

test is satisfied if 5 of 10
conditions are true

tree for exchange rate prediction 
[Craven & Shavlik, 1997]



Searching for m-of-n splits
m-of-n splits are found via a hill-climbing search

• initial state: best 1-of-1 (ordinary) binary split

• evaluation function: information gain

• operators:

m-of-n è m-of-(n+1)

1 of { X1=t, X3=f }   è 1 of { X1=t, X3=f, X7=t }   

m-of-n è (m+1)-of-(n+1)

1 of { X1=t, X3=f }   è 2 of { X1=t, X3=f, X7=t }   



Lookahead

• most DT learning methods use a hill-climbing search
• a limitation of this approach is myopia: an important 

feature may not appear to be informative until used in 
conjunction with other features

• can potentially alleviate this limitation by using a 
lookahead search [Norton ‘89; Murphy & Salzberg ‘95]

• empirically, often doesn’t improve accuracy or tree size



Choosing best split in ordinary DT learning

OrdinaryFindBestSplit(set of training instances D, set of candidate splits C)
maxgain = -∞
for each split S in C

gain = InfoGain(D, S)
if gain > maxgain

maxgain = gain
Sbest = S

return Sbest



Choosing best split with lookahead
(part 1)

LookaheadFindBestSplit(set of training instances D, set of candidate splits C)
maxgain = -∞
for each split S in C

gain = EvaluateSplit(D, C, S)
if gain > maxgain

maxgain = gain
Sbest = S

return Sbest



Choosing best split with lookahead
(part 2)

EvaluateSplit(D, C, S)
if a split on S separates instances by class (i.e.                         )

// no need to split further
return

else
for each outcome k of S

// see what the splits at the next level would be
Dk = subset of instances that have outcome k
Sk = OrdinaryFindBestSplit(Dk, C – S)

// return information gain that would result from this 2-level subtree
return 

HD (Y | S) = 0

HD (Y )− HD (Y | S)

HD (Y )−
Dk

Dk
∑ HDk

(Y | S = k,Sk
⎛
⎝⎜

⎞
⎠⎟



Calculating information gain with lookahead

Humidity

Wind Temperature

D: [12-, 11+]

D: [6-, 8+] D: [6-, 3+]

D: [2-, 3+] D: [4-, 5+] D: [2-, 2+] D: [4-, 1+]

Suppose that when considering Humidity as a split, we find that Wind and 
Temperature are the best features to split on at the next level

high normal

strong weak high low

We can assess value of choosing Humidity as our split by 

 
HD (Y )− 14

23
HD (Y |  Humidity = high,Wind)+ 9

23
HD (Y |  Humidity = low,Temperature)⎛

⎝⎜
⎞
⎠⎟



Calculating information gain with lookahead

 

14
23
HD (Y |  Humidity = high,Wind)+ 9

23
HD (Y |  Humidity = low,Temperature)

   = 5
23
HD (Y |  Humidity = high,Wind = strong)+

       9
23
HD (Y |  Humidity = high,Wind = weak)+

       4
23
HD (Y |  Humidity = low,Temperature = high)+

       5
23
HD (Y |  Humidity = low,Temperature = low)

  

HD (Y |  Humidity = high,Wind = strong) = − 2
5

log 2
5
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Using the tree from the previous slide:



Comments on decision tree learning

• widely used approach
• many variations
• provides humanly comprehensible models when trees 

not too big
• insensitive to monotone transformations of numeric 

features
• standard methods learn axis-parallel hypotheses*

• standard methods not suited to on-line setting*

• usually not among most accurate learning methods

* although variants exist that are exceptions to this



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 

Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom 
Dietterich, and Pedro Domingos. 


