
Decision Trees
CS 760@UW-Madison

Zoo of machine learning models

This is a joke

The lectures ahead
organized according to different machine learning
models/methods

1. supervised learning
• non-parametric: decision tree, nearest neighbors
• parametric

• discriminative: linear/logistic regression, SVM, NN
• generative: Naïve Bayes, Bayesian networks

2. unsupervised learning: clustering, dimension reduction
3. reinforcement learning
4. other settings: ensemble, active, semi-supervised

intertwined with experimental methodologies, theory, etc.
1. evaluation of learning algorithms
2. learning theory: PAC, bias-variance, mistake-bound
3. feature selection

Goals for this lecture
you should understand the following concepts

• the decision tree representation
• the standard top-down approach to learning a tree
• Occam’s razor
• entropy and information gain
• test sets and unbiased estimates of accuracy
• overfitting
• early stopping and pruning
• validation sets
• regression trees
• probability estimation trees

Decision Tree
Representation

A decision tree to predict heart disease
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node
represents one outcome of the test

Each leaf predicts y or P(y | x)

Decision tree exercise
Suppose X1 … X5 are Boolean features, and Y is also Boolean

How would you represent the following with decision trees?

) (i.e., 5252 XXYXXY Ù==

52 XXY Ú=

1352 XXXXY ¬Ú=

Decision Tree Learning

History of decision tree learning

dates of seminal publications: work on these
2 was contemporaneous

many DT variants have been
developed since CART and ID3

1963 1973 1980 1984 1986

AI
D

C
H

AI
D

TH
AI

D

C
AR

T

ID
3

CART developed by Leo Breiman, Jerome
Friedman, Charles Olshen, R.A. Stone

ID3, C4.5, C5.0 developed by Ross Quinlan

Top-down decision tree learning

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria met

make a leaf node N

determine class label/probabilities for N

else

make an internal node N

S = FindBestSplit(D, C)

for each outcome k of S

Dk = subset of instances that have outcome k

kth child of N = MakeSubtree(Dk)

return subtree rooted at N

Candidate splits in ID3, C4.5
• splits on nominal features have one branch per value

• splits on numeric features use a threshold

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false

Candidate splits on numeric features

weight ≤ 35

true false

weight

17 35

given a set of training instances D and a specific feature Xi

• sort the values of Xi in D
• evaluate split thresholds in intervals between instances of

different classes

• could use midpoint of each considered interval as the threshold
• C4.5 instead picks the largest value of Xi in the entire training set that does not

exceed the midpoint

Candidate splits on numeric features
(in more detail)

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature Xi)
C = {} // initialize set of candidate splits for feature Xi

S = partition instances in D into sets s1 … sV where the instances in each
set have the same value for Xi

let vj denote the value of Xi for set sj

sort the sets in S using vj as the key for each sj

for each pair of adjacent sets sj, sj+1 in sorted S
if sj and sj+1 contain a pair of instances with different class labels

// assume we’re using midpoints for splits

add candidate split Xi ≤ (vj + vj+1)/2 to C

return C

Candidate splits
• instead of using k-way splits for k-valued features, could

require binary splits on all discrete features (CART does this)

thal

normal reversible_defect∨ fixed_defect

color

red ∨blue green ∨ yellow

Finding The Best Splits

Finding the best split

• How should we select the best feature to split on at each step?

• Key hypothesis: the simplest tree that classifies the training instances
accurately will work well on previously unseen instances

Occam’s razor

• attributed to 14th century William of Ockham

• “Nunquam ponenda est pluralitis sin necesitate”

• “Entities should not be multiplied beyond necessity”

• “when you have two competing theories that make exactly the same
predictions, the simpler one is the better”

But a thousand years earlier,
I said, “We consider it a good
principle to explain the
phenomena by the simplest
hypothesis possible.”

Occam’s razor and decision trees

• there are fewer short models (i.e. small trees) than
long ones

• a short model is unlikely to fit the training data well
by chance

• a long model is more likely to fit the training data well
coincidentally

Why is Occam’s razor a reasonable heuristic for
decision tree learning?

Finding the best splits

• Can we find and return the smallest possible decision tree
that accurately classifies the training set?

• Instead, we’ll use an information-theoretic heuristic to
greedily choose splits

NO! This is an NP-hard problem
[Hyafil & Rivest, Information Processing Letters, 1976]

Information theory background

• consider a problem in which you are using a code to communicate
information to a receiver

• example: as bikes go past, you are communicating the manufacturer
of each bike

Information theory background

• suppose there are only four types of bikes
• we could use the following code

11

10

01

00

• expected number of bits we have to communicate:
2 bits/bike

Trek

Specialized

Cervelo

Serrota

type code

Information theory background
• we can do better if the bike types aren’t equiprobable
• optimal code uses bits for event with

probability
− log2 P(y)

P(y)

1

€

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code

• expected number of bits we have to communicate:
1.75 bits/bike

å
Î

-
)(values

2)(log)(
Yy

yPyP

Entropy
• entropy is a measure of uncertainty associated with a

random variable

• defined as the expected number of bits required to
communicate the value of the variable

entropy function for
binary variable

å
Î

-=
)(values

2)(log)()(
Yy

yPyPYH

Conditional entropy

• What’s the entropy of Y if we condition on some other
variable X?

where

𝐻(𝑌|𝑋) = (𝑃(𝑋 = 𝑥)𝐻(𝑌|𝑋 = 𝑥)
�

,∈values(4)

𝐻(𝑌|𝑋 = 𝑥) = − (𝑃(𝑌 = 𝑦|𝑋 = 𝑥) log9 𝑃 (𝑌 = 𝑦|𝑋 = 𝑥)
�

:∈values(;)

Information gain (a.k.a. mutual information)

• choosing splits in ID3: select the split S that most reduces
the conditional entropy of Y for training set D

 InfoGain(D,S) = HD (Y)− HD (Y | S)

D indicates that we’re calculating probabilities
using the specific sample D

Relations between the concepts

Figure from wikipedia.org

Information gain example

Information gain example

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• What’s the information gain of splitting on Humidity?

940.0
14
5log

14
5

14
9log

14
9)(22 =÷

ø
ö

ç
è
æ-÷

ø
ö

ç
è
æ-=YHD

592.0
7
1log

7
1

7
6log

7
6)normal|(22

=

÷
ø
ö

ç
è
æ-÷

ø
ö

ç
è
æ-=YHD

985.0
7
4log

7
4

7
3log

7
3)high|(22

=

÷
ø
ö

ç
è
æ-÷

ø
ö

ç
è
æ-=YHD

151.0

)592.0(
14
7)985.0(

14
7940.0

)Humidity|()()Humidity,(InfoGain

=

úû
ù

êë
é +-=

-= YHYHD DD

Information gain example

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• Is it better to split on Humidity or Wind?

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD (Y | strong) = 1.0

✔

151.0

)592.0(
14
7)985.0(

14
7940.0)Humidity,(InfoGain

=

úû
ù

êë
é +-=D

048.0

)0.1(
14
6)811.0(

14
8940.0)Wind,(InfoGain

=

úû
ù

êë
é +-=D

One limitation of information gain

• information gain is biased towards tests with many
outcomes

• e.g. consider a feature that uniquely identifies each
training instance

• splitting on this feature would result in many branches, each of
which is “pure” (has instances of only one class)

• maximal information gain!

Gain ratio
• to address this limitation, C4.5 uses a splitting criterion

called gain ratio

• gain ratio normalizes the information gain by the entropy of
the split being considered

GainRatio(D,S) = InfoGain(D,S)
HD (S)

=
HD (Y)−HD (Y | S)

HD (S)

Stopping criteria

We should form a leaf when
• all of the given subset of instances are of the same class
• we’ve exhausted all of the candidate splits

Is there a reason to stop earlier, or to prune back the tree?

How to assess the accuracy of a tree?
• can we just calculate the fraction of training instances

that are correctly classified?

• consider a problem domain in which instances are
assigned labels at random with P(Y = t) = 0.5

• how accurate would a learned decision tree be on
previously unseen instances?

• how accurate would it be on its training set?

How can we assess the accuracy of a tree?
• to get an unbiased estimate of a learned model’s

accuracy, we must use a set of instances that are held-
aside during learning

• this is called a test set

all instances

test

train

Overfitting

Overfitting
• consider error of model h over

• training data:
• entire distribution of data:

• model overfits the training data if there is an
alternative model such that

 errorD(h)

 errorD (h)

 errorD (h) > errorD (h ')

 errorD(h) < errorD(h ')

HhÎ
Hh Î'

Example 1: overfitting with noisy data
suppose

• the target concept is
• there is noise in some feature values
• we’re given the following training set

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy value

21 XXY Ù=

Example 1: overfitting with noisy data

X1

X2

T F

X3t

f

f

f

X4

t

X1

X2

T F

t f

f

correct tree tree that fits noisy training data

Example 2: overfitting with noise-free data
suppose

• the target concept is
• P(X3 = t) = 0.5 for both classes
• P(Y = t) = 0.67
• we’re given the following training set

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t t f t … t

t t t t f … t

t f f t f … f

f t f f t … f

21 XXY Ù=

Example 2: overfitting with noise-free data

X3

T F

t f

t

training set
accuracy

test set
accuracy

100%

66% 66%

50%

• because the training set is a limited sample, there might
be (combinations of) features that are correlated with
the target concept by chance

Overfitting in decision trees

Example 3: regression using polynomial

𝑡	 = sin(2𝜋𝑥) + 𝜖

Figure from Machine Learning
and Pattern Recognition, Bishop

Regression using
polynomial of

degree M

𝑡	 = sin(2𝜋𝑥) + 𝜖

Example 3: regression using polynomial

𝑡	 = sin(2𝜋𝑥) + 𝜖

Example 3: regression using polynomial

𝑡	 = sin(2𝜋𝑥) + 𝜖

Example 3: regression using polynomial

𝑡	 = sin(2𝜋𝑥) + 𝜖

Example 3: regression using polynomial

Example 3: regression using polynomial

General phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville

Prevent overfitting
• cause: training error and expected error are different

1. there may be noise in the training data

2. training data is of limited size, resulting in difference from the true
distribution

3. larger the hypothesis class, easier to find a hypothesis that fits the
difference between the training data and the true distribution

• prevent overfitting:

1. cleaner training data help!

2. more training data help!

3. throwing away unnecessary hypotheses helps! (Occam’s Razor)

Avoiding overfitting in DT learning

two general strategies to avoid overfitting
1. early stopping: stop if further splitting not justified by

a statistical test
• Quinlan’s original approach in ID3

2. post-pruning: grow a large tree, then prune back
some nodes
• more robust to myopia of greedy tree learning

Pruning in C4.5

1. split given data into training and validation
(tuning) sets

2. grow a complete tree
3. do until further pruning is harmful

• evaluate impact on tuning-set accuracy of
pruning each node

• greedily remove the one that most improves
tuning-set accuracy

Validation sets
• a validation set (a.k.a. tuning set) is a subset of the training set that is

held aside
• not used for primary training process (e.g. tree growing)
• but used to select among models (e.g. trees pruned to varying

degrees)

all instances

testtrain

tuning

Variants

Regression trees

X5 > 10

X3

X2 > 2.1Y=5

Y=24Y=3.5

Y=3.2

• in a regression tree, leaves have functions that predict
numeric values instead of class labels

• the form of these functions depends on the method
• CART uses constants
• some methods use linear functions

X5 > 10

X3

X2 > 2.1Y=2X4+5

Y=3X4+X6

Y=3.2

Y=1

Regression trees in CART

• CART does least squares regression which tries to
minimize

target value for ith

training instance
value predicted by tree for ith training
instance (average value of y for training
instances reaching the leaf)

• at each internal node, CART chooses the split that most
reduces this quantity

å
=

-
||

1

2)()()ˆ(
D

i

ii yy

å å
Î Î

-=
leaves

2)()()ˆ(
L Li

ii yy

Probability estimation trees

X5 > 10

X3

P(Y=pos) = 0.5
P(Y=neg) = 0.5

P(Y=pos) = 0.1
P(Y=neg) = 0.9

P(Y=pos) = 0.8
P(Y=neg) = 0.2

• in a PE tree, leaves estimate the probability of each
class

• could simply use training instances at a leaf to
estimate probabilities, but …

• smoothing is used to make estimates less extreme
(we’ll revisit this topic when we cover Bayes nets)

D: [3+, 3-] D: [0+, 8-]

D: [3+, 0-]

m-of-n splits
• a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91]
• each split is constructed using a heuristic search process
• this can result in smaller, easier to comprehend trees

test is satisfied if 5 of 10
conditions are true

tree for exchange rate prediction
[Craven & Shavlik, 1997]

Searching for m-of-n splits
m-of-n splits are found via a hill-climbing search

• initial state: best 1-of-1 (ordinary) binary split

• evaluation function: information gain

• operators:

m-of-n è m-of-(n+1)

1 of { X1=t, X3=f } è 1 of { X1=t, X3=f, X7=t }

m-of-n è (m+1)-of-(n+1)

1 of { X1=t, X3=f } è 2 of { X1=t, X3=f, X7=t }

Lookahead

• most DT learning methods use a hill-climbing search
• a limitation of this approach is myopia: an important

feature may not appear to be informative until used in
conjunction with other features

• can potentially alleviate this limitation by using a
lookahead search [Norton ‘89; Murphy & Salzberg ‘95]

• empirically, often doesn’t improve accuracy or tree size

Choosing best split in ordinary DT learning

OrdinaryFindBestSplit(set of training instances D, set of candidate splits C)
maxgain = -∞
for each split S in C

gain = InfoGain(D, S)
if gain > maxgain

maxgain = gain
Sbest = S

return Sbest

Choosing best split with lookahead
(part 1)

LookaheadFindBestSplit(set of training instances D, set of candidate splits C)
maxgain = -∞
for each split S in C

gain = EvaluateSplit(D, C, S)
if gain > maxgain

maxgain = gain
Sbest = S

return Sbest

Choosing best split with lookahead
(part 2)

EvaluateSplit(D, C, S)
if a split on S separates instances by class (i.e.)

// no need to split further
return

else
for each outcome k of S

// see what the splits at the next level would be
Dk = subset of instances that have outcome k
Sk = OrdinaryFindBestSplit(Dk, C – S)

// return information gain that would result from this 2-level subtree
return

HD (Y | S) = 0

HD (Y)− HD (Y | S)

HD (Y)−
Dk

Dk
∑ HDk

(Y | S = k,Sk
⎛
⎝⎜

⎞
⎠⎟

Calculating information gain with lookahead

Humidity

Wind Temperature

D: [12-, 11+]

D: [6-, 8+] D: [6-, 3+]

D: [2-, 3+] D: [4-, 5+] D: [2-, 2+] D: [4-, 1+]

Suppose that when considering Humidity as a split, we find that Wind and
Temperature are the best features to split on at the next level

high normal

strong weak high low

We can assess value of choosing Humidity as our split by

HD (Y)− 14

23
HD (Y | Humidity = high,Wind)+ 9

23
HD (Y | Humidity = low,Temperature)⎛

⎝⎜
⎞
⎠⎟

Calculating information gain with lookahead

14
23
HD (Y | Humidity = high,Wind)+ 9

23
HD (Y | Humidity = low,Temperature)

 = 5
23
HD (Y | Humidity = high,Wind = strong)+

 9
23
HD (Y | Humidity = high,Wind = weak)+

 4
23
HD (Y | Humidity = low,Temperature = high)+

 5
23
HD (Y | Humidity = low,Temperature = low)

HD (Y | Humidity = high,Wind = strong) = − 2
5

log 2
5

"
#$

%
&'
−

3
5

log 3
5

"
#$

%
&'

 !

Using the tree from the previous slide:

Comments on decision tree learning

• widely used approach
• many variations
• provides humanly comprehensible models when trees

not too big
• insensitive to monotone transformations of numeric

features
• standard methods learn axis-parallel hypotheses*

• standard methods not suited to on-line setting*

• usually not among most accurate learning methods

* although variants exist that are exceptions to this

THANK YOU
Some of the slides in these lectures have been adapted/borrowed
from materials developed by Yingyu Liang, Mark Craven, David

Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom
Dietterich, and Pedro Domingos.

