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Goals for the lecture

you should understand the following concepts
• k-NN classification
• k-NN regression
• edited nearest neighbor
• k-d trees for nearest neighbor identification (optional)
• inductive bias (hypothesis space bias, preference bias)



Nearest-neighbor classification

learning stage
• given a training set (x(1), y(1)), …, (x(m), y(m)), do nothing           

(it’s sometimes called a lazy learner)

classification stage
• given: an instance x(q) to classify
• find the training-set instance x(i) that is most similar to x(q)
• return the class value y(i)



The decision regions
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Voronoi diagram: each polyhedron indicates the region of feature space that
is in the nearest neighborhood of each training instance



k-nearest-neighbor classification

classification task
• given: an instance x(q) to classify
• find the k training-set instances (x(1), y(1)), …, (x(k), y(k)) that 

are most similar to x(q)
• return the class value
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How can we determine distance

suppose all features are discrete
• Hamming distance: count the number of features for 

which two instances differ

suppose all features are continuous
• Euclidean distance:

• Manhattan distance:
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How can we determine distance

• if we have a mix of discrete/continuous features:

• typically want to apply to continuous features some type of 
normalization (values range 0 to 1) or standardization (values 
distributed according to standard normal)

• many other possible distance functions we could use …
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Standardizing numeric features
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• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows
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• do the same for test instances, using the same  /" and !" derived from 
the training data 



Variants



k-nearest-neighbor regression

learning stage
• given a training set (x(1), y(1)), …, (x(m), y(m)), do nothing

prediction stage
• given: an instance x(q) to make a prediction for
• find the k training-set instances (x(1), y(1)), …, (x(k), y(k)) that 

are most similar to x(q)
• return the value
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Distance-weighted nearest neighbor

å

å

=

=¬ k

i
i

k

i

i
i

w

yw
y

1

1

)( 
ˆ

We can have instances contribute to a prediction 
according to their distance from x(q)
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classification:

regression:



Irrelevant features

x1

here’s a case in which there
is one relevant feature x1 and a 1-
NN rule classifies each instance 
correctly

consider the effect of an
irrelevant feature x2 on distances and 
nearest neighbors

x1

x2



Speeding up k-NN

• k-NN is a “lazy” learning algorithm – does virtually nothing at 
training time

• but classification/prediction time can be costly when the 
training set is large

• two general strategies for alleviating this weakness
• don’t retain every training instance (edited nearest 

neighbor)
• use a smart data structure to look up nearest neighbors 

(e.g. a k-d tree)



Edited instance-based learning

• select a subset of the instances that still provide accurate classifications

• incremental deletion
start with all training instances in memory
for each training instance (x(i), y(i))

if other training instances provide correct classification for (x(i), y(i))
delete it from the memory

• incremental growth
start with an empty memory
for each training instance (x(i), y(i))

if other training instances in memory don’t correctly classify (x(i), y(i))
add it to the memory



k-d Tree: Data Structure for 
Finding Nearest Neighbors



k-d trees
a k-d tree is similar to a decision tree except that each internal node
• stores one instance
• splits on the median value of the feature having the highest variance 
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Finding nearest neighbors with a k-d tree

• use branch-and-bound search
• priority queue stores

• nodes considered
• lower bound on their distance to query instance

• lower bound given by distance using a single feature

• average case:  O(log2m)
• worst case:      O(m)  where m is the size of the training-set



Finding nearest neighbors in a k-d tree
NearestNeighbor(instance x(q))

PQ = { } // minimizing priority queue

best_dist = ∞ // smallest distance seen so far

PQ.push(root, 0)

while PQ is not empty

(node, bound) = PQ.pop();

if (bound ≥ best_dist)
return best_node.instance // nearest neighbor found

dist = distance(x(q), node. instance)

if (dist < best_dist)

best_dist = dist

best_node = node

if (q[node.feature] – node.threshold > 0)

PQ.push(node.left, x(q)[node.feature] – node.threshold)

PQ.push(node.right, 0)

else

PQ.push(node.left, 0)

PQ.push(node.right, node. threshold - x(q) [node.feature])

return best_node. instance



k-d tree example (Manhattan distance)
given query
x(q) = (2, 3)
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k-d tree example (Manhattan distance)

distance best distance best node priority queue
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k-d tree example (Manhattan distance)

distance best distance best node priority queue
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k-d tree example (Manhattan distance)

distance best distance best node priority queue
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k-d tree example (Manhattan distance)

distance best distance best node priority queue
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k-d tree example (Manhattan distance)

distance best distance best node priority queue
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k-d tree example (Manhattan distance)

distance best distance best node priority queue
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k-d tree example (Manhattan distance)

distance best distance best node priority queue
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k-d tree example (Manhattan distance)

distance best distance best node priority queue
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k-d tree example (Manhattan distance)

distance best distance best node priority queue

∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)

10.0 4.0 f (e, 0)  (h, 4) (b, 7)

1.0 1.0 e (d, 1)  (h, 4)  (b, 7)

q

x1 > 6
f

x2 > 10
c

x2 > 5
h

x2 > 4
e

x1 > 3
b

x1 > 9
g

x1 > 10
i

x2 > 11.5
j

x2 > 8
d

x2 > 11
a

pop f
pop c
pop e
pop d return e
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Strength and Limitations



Strengths of instance-based learning

• simple to implement
• “training” is very efficient
• adapts well to on-line learning
• robust to noisy training data (when k > 1)
• often works well in practice



Limitations of instance-based learning
• sensitive to range of feature values

• sensitive to irrelevant and correlated features, although …
• there are variants (such as locally weighted regression) 

that learn weights for different features
• later we’ll talk about feature selection methods

• classification/prediction can be inefficient, although edited 
methods and k-d trees can help alleviate this weakness

• doesn’t provide much insight into problem domain because 
there is no explicit model



Inductive bias

• in order to generalize (i.e. make predictions for previously 
unseen instances) a learning algorithm must have an 
inductive bias

• inductive bias is the set of assumptions a learner uses to 
be able to predict yi for a previously unseen instance xi

• two components
• hypothesis space bias: determines the models that can 

be represented
• preference bias: specifies a preference ordering within 

the space of models



Consider the inductive bias of DT 
and k-NN learners

learner hypothesis space bias preference bias

ID3 decision tree trees with single-feature, axis-
parallel splits

small trees identified by 
greedy search

k-NN Voronoi decomposition determined 
by nearest neighbors

instances in neighborhood 
belong to same class



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 

Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom 
Dietterich, and Pedro Domingos. 


