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Goals for the lecture
you should understand the following concepts

• bias of an estimator
• learning curves
• stratified sampling
• cross validation
• confusion matrices
• TP, FP, TN, FN
• ROC curves
• PR curves
• confidence intervals for error
• pairwise t-tests for comparing learning systems
• scatter plots for comparing learning systems
• lesion studies



Bias %& = E %& − θ

Bias of an estimator

e.g. polling methodologies often have an inherent bias 

& true value of parameter of interest (e.g. model accuracy)
+& estimator of parameter of interest (e.g. test set accuracy)



Test sets revisited
How can we get an unbiased estimate of the accuracy of a learned model?

labeled data set

training set test set

learned model

accuracy estimate

learning 
method



Test sets revisited

How can we get an unbiased estimate of the accuracy of a 
learned model?

• when learning a model, you should pretend that you don’t 
have the test data yet (it is “in the mail”)

• if the test-set labels influence the learned model in any 
way, accuracy estimates will be biased



Learning curves
How does the accuracy of a learning method change as a function of 
the training-set size?

this can be assessed by plotting learning curves

Figure from Perlich et al. Journal of Machine Learning Research, 2003



Learning curves
given training/test set partition

• for each sample size s on learning curve
• (optionally) repeat n times

• randomly select s instances from training set
• learn model
• evaluate model on test set to determine accuracy a
• plot (s, a) or (s, avg. accuracy and error bars)



Limitations of a single training/test partition

• we may not have enough data to make sufficiently large 
training and test sets
• a larger test set gives us more reliable estimate of 

accuracy (i.e. a lower variance estimate)
• but… a larger training set will be more representative of 

how much data we actually have for learning process

• a single training set doesn’t tell us how sensitive accuracy 
is to a particular training sample



Using multiple training/test partitions

• two general approaches for doing this
• random resampling
• cross validation



Random resampling
We can address the second issue by repeatedly randomly 
partitioning the available data into training and test sets. 

labeled data set
+++++- - - - -

+++ - - - ++- -

+++- - - ++- -

+++- - - ++- -

random
partitionstraining sets test sets



Stratified sampling
When randomly selecting training or validation sets, we may want to ensure 
that class proportions are maintained in each selected set

labeled data set
++++++++++++ - - - - - - - -

training set
++++++ - - - -

test set
++++++ - - - -

validation set
+++ - -

This can be done via stratified sampling: 
first stratify instances by class, then 
randomly select instances from each class 
proportionally.



Cross validation

labeled data set

s1 s2 s3 s4 s5

iteration train on test on

1 s2   s3   s4     s5 s1

2 s1  s3   s4    s5 s2

3 s1   s2    s4     s5 s3

4 s1   s2    s3    s5 s4

5 s1   s2    s3    s4 s5 

partition data
into n subsamples

iteratively leave one 
subsample out for 
the test set, train on 
the rest



Cross validation example

iteration train on test on correct

1 s2   s3   s4     s5 s1 11 / 20

2 s1  s3   s4    s5 s2 17 / 20

3 s1   s2    s4     s5 s3 16 / 20

4 s1   s2    s3    s5 s4 13 / 20

5 s1   s2    s3    s4 s5 16 / 20

Suppose we have 100 instances, and we want to estimate accuracy 
with cross validation

accuracy = 73/100 = 73%



Cross validation
• 10-fold cross validation is common, but smaller values of 

n are often used when learning takes a lot of time

• in leave-one-out cross validation, n = # instances

• in stratified cross validation, stratified sampling is used 
when partitioning the data

• CV makes efficient use of the available data for testing

• note that whenever we use multiple training sets, as in 
CV and random resampling, we are evaluating a learning 
method as opposed to an individual learned hypothesis



Confusion matrices
How can we understand what types of mistakes a learned model makes?

predicted class

actual class

figure from vision.jhu.edu

task: activity recognition from video



Confusion matrix for 2-class problems

accuracy =     TP + TN
TP+FP+FN+TN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

error =1− accuracy =     FP + FN
TP+FP+FN+TN



Is accuracy an adequate measure 
of predictive performance?

accuracy may not be useful measure in cases where
• there is a large class skew

• Is 98% accuracy good when 97% of the instances are negative?

• there are differential misclassification costs – say, getting a 
positive wrong costs more than getting a negative wrong

• Consider a medical domain in which a false positive results in an 
extraneous test but a false negative results in a failure to treat a 
disease

• we are most interested in a subset of high-confidence 
predictions



Other accuracy metrics

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class



Other accuracy metrics

true positive rate (recall)  =   TP
actual  pos

  =   TP
TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class



Other accuracy metrics

true positive rate (recall)  =   TP
actual  pos

  =   TP
TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

false positive rate  =   FP
actual  neg

  =   FP
TN + FP



ROC curves
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A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate 
as a threshold on the confidence of an instance being positive is varied

expected curve for 
random guessing

Different methods can work 
better in different parts of 
ROC space.  



Algorithm for creating an ROC curve
let                                           be the test-set instances sorted according to predicted confidence 

c(i) that each instance is positive
let num_neg, num_pos be the number of negative/positive instances in the test set
TP = 0,  FP = 0
last_TP = 0
for i = 1 to m

// find thresholds where there is a pos instance on high side, neg instance on low side
if  (i > 1) and ( c(i)≠ c(i-1) ) and ( y(i) == neg ) and ( TP > last_TP )

FPR = FP / num_neg,   TPR = TP / num_pos
output (FPR, TPR) coordinate
last_TP = TP

if y(i) == pos
++TP

else
++FP

FPR = FP / num_neg,  TPR = TP / num_pos
output (FPR, TPR) coordinate

y(1),  c(1)( )... y(m),  c(m)( )( )



Plotting an ROC curve 

Ex 9 .99 +
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Ex 1 .72 -
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ROC curve example

figure from Bockhorst et al., Bioinformatics 2003 

task: recognizing genomic units called operons



ROC curves and misclassification costs

best operating point when
FN costs 10× FP

best operating point when
cost of misclassifying positives and 
negatives is equal

best operating point when
FP costs 10× FN

The best operating point depends on the relative costs of FN and FP 
misclassifications



ROC curves

suppose our TPR is 0.9, and FPR is 0.01

fraction of instances that are positive fraction of positive predictions that 
are correct

0.5 0.989

0.1 0.909

0.01 0.476

0.001 0.083

Does a low false-positive rate indicate that most positive predictions 
(i.e. predictions with confidence > some threshold) are correct?



Other accuracy metrics

recall (TP rate)  =   TP
actual  pos

  =   TP
TP + FN

true positives
(TP)

true negatives
(TN)

false positives
(FP)

false negatives
(FN)

positive

negative

positive negative

predicted
class

actual class

precision (positive predictive value)  =   TP
predicted  pos

  =   TP
TP+FP



Precision/recall curves
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A precision/recall curve plots the precision vs. recall (TP-rate) as a 
threshold on the confidence of an instance being positive is varied



Precision/recall curve example

figure from Kawaler et al., Proc. of AMIA Annual Symosium, 2012 

predicting patient risk for VTE



How do we get one ROC/PR curve 
when we do cross validation?

Approach 1
• make assumption that confidence values are comparable 

across folds
• pool predictions from all test sets
• plot  the curve from the pooled predictions

Approach 2 (for ROC curves)
• plot individual curves for all test sets
• view each curve as a function
• plot the average curve for this set of functions



Comments on ROC and PR curves
both
• allow predictive performance to be assessed at various levels of 

confidence
• assume binary classification tasks
• sometimes summarized by calculating area under the curve

ROC curves
• insensitive to changes in class distribution (ROC curve does not change 

if the proportion of positive and negative instances in the test set are 
varied)

• can identify optimal classification thresholds for tasks with differential 
misclassification costs

precision/recall curves
• show the fraction of predictions that are false positives
• well suited for tasks with lots of negative instances



Confidence intervals on error
Given the observed error (accuracy) of a model over a limited 
sample of data, how well does this error characterize its accuracy 
over additional instances?

Suppose we have
• a learned model h
• a test set S containing n instances drawn independently of one 

another and independent of h
• n ≥ 30
• h makes r errors over the n instances

our best estimate of the error of h is

errorS (h) =
r
n



Confidence intervals on error

With approximately C% probability, the true error lies in the interval

errorS (h)± zC
errorS (h)(1− errorS (h))

n

where zC is a constant that depends on C (e.g. for 95% confidence, zC =1.96)



Confidence intervals on error
How did we get this?
1. Our estimate of the error follows a binomial distribution given by n and p

(the true error rate over the data distribution)

2. Most common way to determine a binomial confidence interval is to use the 
normal approximation (although can calculate exact intervals if n is not too 
large) 



Confidence intervals on error
2. When n ≥ 30, and p is not too extreme, the normal distribution is a good 

approximation to the binomial

3. We can determine the C% confidence interval by determining what bounds 
contain C% of the probability mass under the normal



Comparing learning systems

How can we determine if one learning system provides 
better performance than another

• for a particular task?
• across a set of tasks / data sets?



Motivating example

Accuracies on test sets
System A: 80% 50 75 … 99
System B: 79 49 74 … 98

δ : +1 +1 +1 … +1

• Mean accuracy for System A is better, but the standard 
deviations for the two clearly overlap

• Notice that System A is always better than System B



Comparing systems using a paired t test
• consider δ’s as observed values of a set of i.i.d. random 

variables

• null hypothesis: the 2 learning systems have the same 
accuracy

• alternative hypothesis: one of the systems is more accurate 
than the other 

• hypothesis test: 
• use paired t-test to determine probability p that mean of 
δ’s would arise from null hypothesis

• if p is sufficiently small (typically < 0.05) then reject the 
null hypothesis



Comparing systems using a paired t test

1. calculate the sample mean

2. calculate the t statistic

3. determine the corresponding p-value, by 
looking up t in a table of values for the 
Student's t-distribution with n-1 degrees of 
freedom
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Comparing systems using a paired t test

t

f(t)

for  a two-tailed test, the p-value
represents the probability mass in 
these two regions

The null distribution of our t
statistic looks like this

The p-value indicates how far out 
in a tail our t statistic is

If the p-value is sufficiently small, 
we reject the null hypothesis,
since it is unlikely we’d get such a 
t by chance



Why do we use a two-tailed test?

• a two-tailed test asks the question: is the accuracy of the 
two systems different

• a one-tailed test asks the question: is system A better than 
system B

• a priori, we don’t know which learning system will be more 
accurate (if there is a difference) – we want to allow that 
either one might be



Comments on hypothesis testing to 
compare learning systems

• the paired t-test can be used to compare two learning 
systems

• other tests (e.g. McNemar’s χ2 test) can be used to 
compare two learned models

• a statistically significant difference is not necessarily a 
large-magnitude difference



Scatter plots for pairwise
method comparison

We can compare the performance of two methods A and B by plotting (A 
performance, B performance) across numerous data sets

figure from Freund & Mason, ICML 1999 figure from Noto & Craven, BMC Bioinformatics 2006 



Lesion (ablation) studies

figure from Bockhorst et al., Bioinformatics 2003 

We can gain insight into what contributes to a learning system’s performance by 
removing (lesioning) components of it

The ROC curves here show how performance is affected when various feature 
types are removed from the learning representation



To avoid pitfalls, ask

1. Is my held-aside test data really representative of going out to 
collect new data? 

• Even if your methodology is fine, someone may have collected 
features for positive examples differently than for negatives –
should be randomized 

• Example: samples from cancer processed by different people 
or on different days than samples for normal controls 



To avoid pitfalls, ask

2. Did I repeat my entire data processing procedure on every fold of 
cross-validation, using only the training data for that fold?

• On each fold of cross-validation, did I ever access in any way 
the label of a test instance?

• Any preprocessing done over entire data set (feature 
selection, parameter tuning, threshold selection) must not use 
labels 



To avoid pitfalls, ask

3. Have I modified my algorithm so many times, or tried so many 
approaches, on this same data set that I (the human) am 
overfitting it?

• Have I continually modified my preprocessing or learning 
algorithm until I got some improvement on this data set?

• If so, I really need to get some additional data now to at least 
test on 



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 

Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom 
Dietterich, and Pedro Domingos. 


