

Goals for the lecture

you should understand the following concepts

- bias of an estimator
- learning curves
- stratified sampling
- cross validation
- confusion matrices
- TP, FP, TN, FN
- ROC curves
- PR curves
- confidence intervals for error
- pairwise t-tests for comparing learning systems
- scatter plots for comparing learning systems
- lesion studies

Bias of an estimator

- θ true value of parameter of interest (e.g. model accuracy)
- $\hat{\theta}$ estimator of parameter of interest (e.g. test set accuracy)

$$Bias[\widehat{\theta}] = E[\widehat{\theta}] - \theta$$

e.g. polling methodologies often have an inherent bias

∀ FiveThirtyEight

POLLSTER	LIVE CALLER WITH CELLPHONES	INTERNET	NCPP/ AAPOR/ ROPER	POLLS ANALYZED	SIMPLE AVERAGE ERROR	RACES CALLED CORRECTLY	ADVANCED +/-	PREDICTIVE +/-	538 BANNED GRADE BY 538	MEAN-REVERTED BIAS
SurveyUSA			•	763	4.6	90%	-1.0	-0.8	A	D+0.1
YouGov		•		707	6.7	93%	-0.3	+0.1	В	D+1.6
Rasmussen Reports/ Pulse Opinion Research				657	5.3	79%	+0.4	+0.7	C+	R+2.0
Zogby Interactive/JZ Analytics		•		465	5.6	78%	+0.8	+1.2	C-	R+0.8
Mason-Dixon Polling & Research, Inc.	•			415	5.2	86%	-0.4	-0.2	B+	R+1.0
Public Policy Polling				383	4.9	82%	-0.5	-0.1	B+	R+0.2
Research 2000				279	5.5	88%	+0.2	+0.6	(3) ×	D+1.4

Test sets revisited

How can we get an <u>unbiased</u> estimate of the accuracy of a learned model?

Test sets revisited

How can we get an unbiased estimate of the accuracy of a learned model?

- when learning a model, you should pretend that you don't have the test data yet (it is "in the mail")
- if the test-set labels influence the learned model in any way, accuracy estimates will be biased

Learning curves

How does the accuracy of a learning method change as a function of the training-set size?

this can be assessed by plotting *learning curves*

Figure from Perlich et al. Journal of Machine Learning Research, 2003

Learning curves

given training/test set partition

- for each sample size s on learning curve
 - (optionally) repeat n times
 - randomly select s instances from training set
 - learn model
 - evaluate model on test set to determine accuracy a
 - plot (s, a) or (s, avg. accuracy and error bars)

Limitations of a single training/test partition

- we may not have enough data to make sufficiently large training and test sets
 - a <u>larger test set</u> gives us more reliable estimate of accuracy (i.e. a lower variance estimate)
 - but... a <u>larger training set</u> will be more representative of how much data we actually have for learning process
- a single training set doesn't tell us how sensitive accuracy is to a particular training sample

Using multiple training/test partitions

- two general approaches for doing this
 - random resampling
 - cross validation

Random resampling

We can address the second issue by repeatedly randomly partitioning the available data into training and test sets.

Stratified sampling

When randomly selecting training or validation sets, we may want to ensure that class proportions are maintained in each selected set

Cross validation

partition data into *n* subsamples

labeled data set

S₁ S₂ S₃ S₄ S₅

iteratively leave one subsample out for the test set, train on the rest

iteration	train on	test on
1	S ₂ S ₃ S ₄ S ₅	S ₁
2	S ₁ S ₃ S ₄ S ₅	S ₂
3	S ₁ S ₂ S ₄ S ₅	S ₃
4	S ₁ S ₂ S ₃ S ₅	S ₄
5	S ₁ S ₂ S ₃ S ₄	S ₅

Cross validation example

Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on	correct
1	S ₂ S ₃ S ₄ S ₅	S ₁	11 / 20
2	S ₁ S ₃ S ₄ S ₅	S ₂	17 / 20
3	S ₁ S ₂ S ₄ S ₅	S ₃	16 / 20
4	S ₁ S ₂ S ₃ S ₅	S ₄	13 / 20
5	S ₁ S ₂ S ₃ S ₄	S ₅	16 / 20

accuracy = 73/100 = 73%

Cross validation

- 10-fold cross validation is common, but smaller values of n are often used when learning takes a lot of time
- in *leave-one-out* cross validation, *n* = # instances
- in stratified cross validation, stratified sampling is used when partitioning the data
- CV makes efficient use of the available data for testing
- note that whenever we use multiple training sets, as in CV and random resampling, we are evaluating a <u>learning</u> <u>method</u> as opposed to an <u>individual learned hypothesis</u>

Confusion matrices

How can we understand what types of mistakes a learned model makes?

task: activity recognition from video

actual class

predicted class

Confusion matrix for 2-class problems

accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$
error = 1 - accuracy =
$$\frac{FP + FN}{TP + FP + FN + TN}$$

Is accuracy an adequate measure of predictive performance?

accuracy may not be useful measure in cases where

- there is a large class skew
 - Is 98% accuracy good when 97% of the instances are negative?
- there are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
- we are most interested in a subset of high-confidence predictions

true positive rate (recall) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

true positive rate (recall) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

false positive rate =
$$\frac{FP}{\text{actual neg}}$$
 = $\frac{FP}{TN + FP}$

ROC curves

A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied

Algorithm for creating an ROC curve


```
let (y^{(1)}, c^{(1)}) \cdots (y^{(m)}, c^{(m)}) be the test-set instances sorted according to predicted confidence c^{(i)} that each instance is positive
let num_neg, num_pos be the number of negative/positive instances in the test set
TP = 0, FP = 0
last TP = 0
for i = 1 to m
    // find thresholds where there is a pos instance on high side, neg instance on low side
    if (i > 1) and (c^{(i)} \neq c^{(i-1)}) and (y^{(i)} = = \text{neg}) and (TP > last\_TP)
                        FPR = FP / num \ neg, \ TPR = TP / num \ pos
            output (FPR, TPR) coordinate
            last TP = TP
    if y^{(i)} == pos
            ++TP
    else
            ++FP
FPR = FP / num\_neg, TPR = TP / num\_pos
```

output (FPR, TPR) coordinate

Plotting an ROC curve

instance	confider positive	nce	correct class
Ex 9	.99		+
Ex 7	.98	TPR= 2/5, FPR= 0/5	+
Ex 1	.72		_
Ex 2	.70		+
Ex 6	.65	TPR= 4/5, FPR= 1/5	+
Ex 10	.51		-
Ex 3	.39		-
Ex 5	.24	TPR= 5/5, FPR= 3/5	+
Ex 4	.11		-
Ex 8	.01	TPR= 5/5, FPR= 5/5	_

ROC curve example

task: recognizing genomic units called operons

figure from Bockhorst et al., Bioinformatics 2003

ROC curves and misclassification costs

The best operating point depends on the relative costs of FN and FP misclassifications

ROC curves

Does a low false-positive rate indicate that most positive predictions (i.e. predictions with confidence > some threshold) are correct?

suppose our TPR is 0.9, and FPR is 0.01

fraction of instances that are positive	fraction of positive predictions that are correct
0.5	0.989
0.1	0.909
0.01	0.476
0.001	0.083

recall (TP rate) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

precision (positive predictive value) =
$$\frac{TP}{predicted pos}$$
 = $\frac{TP}{TP + FP}$

Precision/recall curves

A precision/recall curve plots the precision vs. recall (TP-rate) as a threshold on the confidence of an instance being positive is varied

Precision/recall curve example

predicting patient risk for VTE

figure from Kawaler et al., Proc. of AMIA Annual Symosium, 2012

Approach 1

- make assumption that confidence values are comparable across folds
- pool predictions from all test sets
- plot the curve from the pooled predictions

Approach 2 (for ROC curves)

- plot individual curves for all test sets
- view each curve as a function
- plot the average curve for this set of functions

Comments on ROC and PR curves

both

- allow predictive performance to be assessed at various levels of confidence
- assume binary classification tasks
- sometimes summarized by calculating area under the curve

ROC curves

- insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
- can identify optimal classification thresholds for tasks with differential misclassification costs

precision/recall curves

- show the fraction of predictions that are false positives
- well suited for tasks with lots of negative instances

Given the observed error (accuracy) of a model over a limited sample of data, how well does this error characterize its accuracy over additional instances?

Suppose we have

- a learned model h
- a test set S containing n instances drawn independently of one another and independent of h
- *n* ≥ 30
- h makes r errors over the n instances

our best estimate of the error of h is

$$error_{S}(h) = \frac{r}{n}$$

With approximately C% probability, the true error lies in the interval

$$error_{S}(h) \pm z_{C} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

where z_C is a constant that depends on C (e.g. for 95% confidence, z_C =1.96)

How did we get this?

Our estimate of the error follows a binomial distribution given by n and p
 (the true error rate over the data distribution)

2. Most common way to determine a binomial confidence interval is to use the *normal approximation* (although can calculate exact intervals if *n* is not too large)

2. When $n \ge 30$, and p is not too extreme, the normal distribution is a good

approximation to the binomial

3. We can determine the C% confidence interval by determining what bounds contain C% of the probability mass under the normal

Comparing learning systems

How can we determine if one learning system provides better performance than another

- for a particular task?
- across a set of tasks / data sets?

Motivating example

Accuracies on test sets

System A: 80% 50 75 ... 99
System B: 79 49 74 ... 98
δ: +1 +1 +1 ... +1

- Mean accuracy for System A is better, but the standard deviations for the two clearly overlap
- Notice that System A is always better than System B

Comparing systems using a paired t test

- consider δ 's as observed values of a set of i.i.d. random variables
- null hypothesis: the 2 learning systems have the same accuracy
- alternative hypothesis: one of the systems is more accurate than the other
- hypothesis test:
 - use paired t-test to determine probability p that mean of δ 's would arise from null hypothesis
 - if p is sufficiently small (typically < 0.05) then reject the null hypothesis

1. calculate the sample mean

$$\bar{\delta} = \frac{1}{n} \sum_{i=1}^{n} \delta_i$$

2. calculate the *t* statistic

$$t = \frac{\delta}{\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\delta_i - \bar{\delta})^2}}$$

3. determine the corresponding *p*-value, by looking up *t* in a table of values for the Student's *t*-distribution with *n-1* degrees of freedom

Comparing systems using a paired t test

for a two-tailed test, the *p*-value represents the probability mass in these two regions

The null distribution of our *t* statistic looks like this

The *p*-value indicates how far out in a tail our *t* statistic is

If the *p*-value is sufficiently small, we reject the <u>null hypothesis</u>, since it is unlikely we'd get such a *t* by chance

Why do we use a two-tailed test?

- a two-tailed test asks the question: is the accuracy of the two systems different
- a one-tailed test asks the question: is system A better than system B
- a priori, we don't know which learning system will be more accurate (if there is a difference) – we want to allow that either one might be

Comments on hypothesis testing to compare learning systems

- the paired t-test can be used to compare two learning systems
- other tests (e.g. McNemar's χ^2 test) can be used to compare two learned models
- a statistically significant difference is not necessarily a large-magnitude difference

Scatter plots for pairwise method comparison

We can compare the performance of two methods *A* and *B* by plotting (*A* performance, *B* performance) across <u>numerous data sets</u>

figure from Freund & Mason, ICML 1999

figure from Noto & Craven, BMC Bioinformatics 2006

Lesion (ablation) studies

We can gain insight into what contributes to a learning system's performance by removing (lesioning) components of it

The ROC curves here show how performance is affected when various feature types are removed from the learning representation

To avoid pitfalls, ask

- 1. Is my held-aside test data really representative of going out to collect new data?
 - Even if your methodology is fine, someone may have collected features for positive examples differently than for negatives – should be randomized
 - Example: samples from cancer processed by different people or on different days than samples for normal controls

To avoid pitfalls, ask

- 2. Did I repeat my entire data processing procedure on every fold of cross-validation, using only the training data for that fold?
 - On each fold of cross-validation, did I ever access in any way the label of a test instance?
 - Any preprocessing done over entire data set (feature selection, parameter tuning, threshold selection) must not use labels

To avoid pitfalls, ask

- 3. Have I modified my algorithm so many times, or tried so many approaches, on this same data set that I (the human) am overfitting it?
 - Have I continually modified my preprocessing or learning algorithm until I got some improvement on this data set?
 - If so, I really need to get some additional data now to at least test on

