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Goals for the lecture

you should understand the following concepts
• regularization
• different views of regularization
• norm constraint
• data augmentation
• early stopping
• dropout
• batch normalization
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What is regularization?

• In general: any method to prevent overfitting or help the 
optimization

• Specifically: additional terms in the training optimization 
objective to prevent overfitting or help the optimization



𝑡	 = sin 2𝜋𝑥 + 𝜖

Figure from Machine Learning 
and Pattern Recognition, Bishop

Example: regression using polynomials



Figure from Machine Learning 
and Pattern Recognition, Bishop

Example: regression using polynomials



Overfitting

• Key: empirical loss and expected loss are different

• Smaller the data set, larger the difference between the two
• Larger the hypothesis class, easier to find a hypothesis that fits 

the difference between the two
• Thus has small training error but large test error (overfitting)

• Larger data set helps
• Throwing away useless hypotheses also helps (regularization)



Different views of regularization



Regularization as hard constraint

• Training objective

min	
-

𝐿/ 𝑓 =
1
𝑛
3𝑙(𝑓, 𝑥7, 𝑦7)
:

7;<

subject	to: 		𝑓 ∈ 𝓗

• When parametrized

min	
G

𝐿/ 𝜃 =
1
𝑛
3𝑙(𝜃, 𝑥7, 𝑦7)
:

7;<

subject	to: 		𝜃 ∈ 𝛺



Regularization as hard constraint

• When 𝛺	measured by some quantity 𝑅

min	
G

𝐿/ 𝜃 =
1
𝑛
3𝑙(𝜃, 𝑥7, 𝑦7)
:

7;<

subject	to: 		𝑅 𝜃 ≤ 𝑟
• Example: 𝑙M regularization

min	
G

𝐿/ 𝜃 =
1
𝑛
3𝑙(𝜃, 𝑥7, 𝑦7)
:

7;<

subject	to:		| 𝜃| MM ≤ 𝑟M



Regularization as soft constraint

• The hard-constraint optimization is equivalent to soft-constraint

min	
G

𝐿/O 𝜃 =
1
𝑛
3𝑙(𝜃, 𝑥7, 𝑦7)
:

7;<

+ 𝜆∗𝑅(𝜃)

for some regularization parameter 𝜆∗ > 0
• Example: 𝑙M regularization

min	
G

𝐿/O 𝜃 =
1
𝑛
3𝑙(𝜃, 𝑥7, 𝑦7)
:

7;<

+ 𝜆∗| 𝜃| MM



Regularization as soft constraint

• Shown by Lagrangian multiplier method

ℒ 𝜃, 𝜆 ≔ 𝐿/ 𝜃 + 𝜆[𝑅 𝜃 − 𝑟]
• Suppose 𝜃∗ is the optimal for hard-constraint optimization 

𝜃∗ = argmin	
G

max
]^_

ℒ 𝜃, 𝜆 ≔ 𝐿/ 𝜃 + 𝜆[𝑅 𝜃 − 𝑟]

• Suppose 𝜆∗ is the corresponding optimal for max

𝜃∗ = argmin	
G

ℒ 𝜃, 𝜆∗ ≔ 𝐿/ 𝜃 + 𝜆∗[𝑅 𝜃 − 𝑟]



Regularization as Bayesian prior

• Bayesian view: everything is a distribution
• Prior over the hypotheses: 𝑝 𝜃
• Posterior over the hypotheses: 𝑝 𝜃	|	{𝑥7, 𝑦7}
• Likelihood: 𝑝 𝑥7, 𝑦7 𝜃)

• Bayesian rule:

𝑝 𝜃	|	{𝑥7, 𝑦7} =
𝑝 𝜃 𝑝 𝑥7, 𝑦7 𝜃)

𝑝({𝑥7, 𝑦7})



Regularization as Bayesian prior

• Bayesian rule:
𝑝 𝜃	|	{𝑥7, 𝑦7} =

𝑝 𝜃 𝑝 𝑥7, 𝑦7 𝜃)
𝑝({𝑥7, 𝑦7})

• Maximum A Posteriori (MAP):

max
G
log 𝑝 𝜃	|	{𝑥7, 𝑦7} = max

G
	log 𝑝 𝜃 + log 𝑝 𝑥7, 𝑦7 	|	𝜃

Regularization MLE loss



Regularization as Bayesian prior

• Example: 𝑙M loss with 𝑙M regularization

min	
G

𝐿/O 𝜃 =
1
𝑛
3 𝑓G 𝑥7 − 𝑦7 M
:

7;<

+ 𝜆∗| 𝜃| MM

• Correspond to a normal likelihood 𝑝 𝑥, 𝑦	|	𝜃 and a normal prior 
𝑝(𝜃)



Three views

• Typical choice for optimization: soft-constraint

min	
G

𝐿/O 𝜃 = 𝐿/ 𝜃 + 𝜆𝑅(𝜃)

• Hard constraint and Bayesian view: conceptual; or used for 
derivation



Three views

• Hard-constraint preferred if
• Know the explicit bound 𝑅 𝜃 ≤ 𝑟
• Soft-constraint causes trapped in a local minima while projection back 

to feasible set leads to stability

• Bayesian view preferred if
• Domain knowledge easy to represent as a prior



Examples of Regularization



Classical regularization

• Norm penalty
• 𝑙M regularization
• 𝑙< regularization

• Robustness to noise
• Noise to the input
• Noise to the weights



𝑙M regularization

min	
G

𝐿/O 𝜃 = 𝐿/(𝜃) +
𝛼
2
| 𝜃| MM

• Effect on (stochastic) gradient descent 
• Effect on the optimal solution



Effect on gradient descent

• Gradient of regularized objective

𝛻𝐿/O 𝜃 = 𝛻𝐿/(𝜃) + 𝛼𝜃
• Gradient descent update 

𝜃 ← 𝜃 − 𝜂𝛻𝐿/O 𝜃 = 𝜃 − 𝜂	𝛻𝐿/ 𝜃 − 𝜂𝛼𝜃 = 1 − 𝜂𝛼 𝜃 − 𝜂	𝛻𝐿/ 𝜃
• Terminology: weight decay



Effect on the optimal solution

• Consider a quadratic approximation around 𝜃∗

𝐿/ 𝜃 ≈ 𝐿/ 𝜃∗ + 𝜃 − 𝜃∗ i𝛻𝐿/ 𝜃∗ +
1
2
𝜃 − 𝜃∗ i𝐻 𝜃 − 𝜃∗

• Since 𝜃∗ is optimal, 𝛻𝐿/ 𝜃∗ = 0

𝐿/ 𝜃 ≈ 𝐿/ 𝜃∗ +
1
2
𝜃 − 𝜃∗ i𝐻 𝜃 − 𝜃∗

𝛻𝐿/ 𝜃 ≈ 𝐻 𝜃 − 𝜃∗



Effect on the optimal solution

• Gradient of regularized objective 

𝛻𝐿/O 𝜃 ≈ 𝐻 𝜃 − 𝜃∗ + 𝛼𝜃
• On the optimal 𝜃O∗

0 = 𝛻𝐿/O 𝜃O∗ ≈ 𝐻 𝜃O∗ − 𝜃∗ + 𝛼𝜃O∗

𝜃O∗ ≈ 𝐻 + 𝛼𝐼 l<𝐻𝜃∗



Effect on the optimal solution

• The optimal

𝜃O∗ ≈ 𝐻 + 𝛼𝐼 l<𝐻𝜃∗

• Suppose 𝐻 has eigen-decomposition 𝐻 = 𝑄Λ𝑄i

𝜃O∗ ≈ 𝐻 + 𝛼𝐼 l<𝐻𝜃∗ = 𝑄 Λ + 𝛼𝐼 l<Λ𝑄i𝜃∗

• Effect: rescale along eigenvectors of 𝐻



Effect on the optimal solution

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Notations: 
𝜃∗ = 𝑤∗, 𝜃O∗ = 𝑤p



𝑙< regularization

min	
G

𝐿/O 𝜃 = 𝐿/(𝜃) + 𝛼| 𝜃 |<

• Effect on (stochastic) gradient descent
• Effect on the optimal solution



Effect on gradient descent

• Gradient of regularized objective

𝛻𝐿/O 𝜃 = 𝛻𝐿/ 𝜃 + 𝛼	sign(𝜃)
where sign applies to each element in 𝜃

• Gradient descent update 

𝜃 ← 𝜃 − 𝜂𝛻𝐿/O 𝜃 = 𝜃 − 𝜂	𝛻𝐿/ 𝜃 − 𝜂𝛼	sign(𝜃)



Effect on the optimal solution

• Consider a quadratic approximation around 𝜃∗

𝐿/ 𝜃 ≈ 𝐿/ 𝜃∗ + 𝜃 − 𝜃∗ i𝛻𝐿/ 𝜃∗ +
1
2
𝜃 − 𝜃∗ i𝐻 𝜃 − 𝜃∗

• Since 𝜃∗ is optimal, 𝛻𝐿/ 𝜃∗ = 0

𝐿/ 𝜃 ≈ 𝐿/ 𝜃∗ +
1
2
𝜃 − 𝜃∗ i𝐻 𝜃 − 𝜃∗



Effect on the optimal solution

• Further assume that 𝐻 is diagonal and positive (𝐻77> 0, ∀𝑖)
• not true in general but assume for getting some intuition

• The regularized objective is (ignoring constants)

𝐿/O 𝜃 ≈3
1
2
𝐻77 𝜃7 − 𝜃7∗ M + 𝛼	|𝜃7|

�

7

• The optimal 𝜃O∗

(𝜃O∗)7 		≈
max 𝜃7∗ −

𝛼
𝐻77

, 0 			if		𝜃7∗ ≥ 0

min 𝜃7∗ +
𝛼
𝐻77

, 0 			if		𝜃7∗ < 0



Effect on the optimal solution

• Effect: induce sparsity

−
𝛼
𝐻77

𝛼
𝐻77

(𝜃O∗)7

(𝜃∗)7



Effect on the optimal solution

• Further assume that 𝐻 is diagonal
• Compact expression for the optimal 𝜃O∗

(𝜃O∗)7 		≈ sign 𝜃7∗ 	max	{ 𝜃7∗ −
𝛼
𝐻77

, 0}



Bayesian view

• 𝑙< regularization corresponds to Laplace prior

𝑝 𝜃 ∝ exp	(−𝛼3|𝜃7|
�

7

)	

log	𝑝 𝜃 = −𝛼3 𝜃7

�

7

+ constant = −𝛼| 𝜃 |< + constant



Multiple optimal solutions?

Class	+1

Class	-1

𝑤M 𝑤y𝑤<

Prefer	𝑤M (higher	confidence)



Add noise to the input

Class	+1

Class	-1

𝑤M

Prefer	𝑤M (higher	confidence)



Caution: not too much noise

Class	+1

Class	-1

𝑤M

Prefer	𝑤M (higher	confidence)

Too	much	noise	leads	
to	data	points	cross	

the	boundary



Equivalence to weight decay

• Suppose the hypothesis is 𝑓 𝑥 = 𝑤i𝑥, noise is 𝜖~𝑁(0, 𝜆𝐼)
• After adding noise, the loss is

𝐿(𝑓)	=	𝔼},~,� 𝑓 𝑥 + 𝜖 − 𝑦 M = 𝔼},~,� 𝑓 𝑥 + 𝑤i𝜖 − 𝑦 M

𝐿(𝑓)	=𝔼},~,� 𝑓 𝑥 − 𝑦 M	+	2𝔼},~,� 𝑤i𝜖 𝑓 𝑥 − 𝑦 + 𝔼},~,� 𝑤i𝜖 M

𝐿(𝑓)	=𝔼},~,� 𝑓 𝑥 − 𝑦 M + 𝜆 𝑤 M



Add noise to the weights

• For the loss on each data point, add a noise term to the weights 
before computing the prediction

𝜖~𝑁(0, 𝜂𝐼), 𝑤′ = 𝑤 + 𝜖

• Prediction: 𝑓�� 𝑥 instead of 𝑓� 𝑥
• Loss becomes

𝐿(𝑓)	=	𝔼},~,� 𝑓��� 𝑥 − 𝑦 M



Add noise to the weights

• Loss becomes
𝐿(𝑓)	=	𝔼},~,� 𝑓��� 𝑥 − 𝑦 M

• To simplify, use Taylor expansion
• 𝑓��� 𝑥 ≈ 𝑓� 𝑥 + 𝜖i𝛻𝑓� 𝑥

• Plug in
• 𝐿 𝑓 ≈ 𝔼 𝑓� 𝑥 − 𝑦 M + 2𝔼[ 𝑓� 𝑥 − 𝑦 𝜖i𝛻𝑓�(𝑥)] + 𝜂𝔼||𝛻𝑓�(𝑥)||M

Regularization	termExpectation = 0



Other types of regularizations

• Data augmentation
• Early stopping
• Dropout
• Batch Normalization



Data augmentation

Figure	from	Image	Classification	with	Pyramid	Representation	
and	Rotated	Data	Augmentation	on	Torch	7,	by	Keven	Wang



Data augmentation

• Adding noise to the input: a special kind of augmentation

• Be careful about the transformation applied:
• Example: classifying ‘b’ and ‘d’
• Example: classifying ‘6’ and ‘9’



Early stopping

• Idea: don’t train the network to too small training error

• Recall overfitting: Larger the hypothesis class, easier to find a 
hypothesis that fits the difference between the two

• Prevent overfitting: do not push the hypothesis too much; use 
validation error to decide when to stop



Early stopping

Figure	from	Deep	Learning,	
Goodfellow,	Bengio and	Courville



Early stopping

• When training, also output validation error
• Every time validation error improved, store a copy of the 

weights
• When validation error not improved for some time, stop
• Return the copy of the weights stored



Early stopping 

• hyperparameter selection: training step is the hyperparameter

• Advantage
• Efficient: along with training; only store an extra copy of weights
• Simple: no change to the model/algo

• Disadvantage: need validation data



Early stopping

• Strategy to heuristically mitigate the disadvantage
• After early stopping of the first run, train a second run and reuse 

validation data

• How to heuristically reuse validation data 
1. Start fresh, train with both training data and validation data up to the 

previous number of epochs  
2. Start from the weights in the first run, train with both training data and 

validation data until the validation loss < the training loss at the early 
stopping point



Early stopping as a regularizer

Figure	from	Deep	Learning,	
Goodfellow,	Bengio and	Courville



Dropout

• Randomly select weights to update

• More precisely, in each update step
• Dropout probability p, or present probability 1-p
• Randomly sample a different binary mask to all the input and hidden 

units
• Multiple the mask bits with the units and do the update as usual

• During test time: all units present; multiply weight by 1-p

• Typical dropout probability: 0.2 for input and 0.5 for hidden units



Dropout during training

Figures	from	Dropout: A Simple 
Way to Prevent Neural 
Networks from Overfitting,	
Srivastava et al. JMLR 2014



Dropout during test

Figures	from	Dropout: A Simple 
Way to Prevent Neural 
Networks from Overfitting,	
Srivastava et al. JMLR 2014
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Batch Normalization

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: �, �

Output: {yi = BN�,�(xi)}

µB  
1

m

mX

i=1

xi // mini-batch mean

�2
B  

1

m

mX

i=1

(xi � µB)
2 // mini-batch variance

bxi  
xi � µBp
�2
B + ✏

// normalize

yi  �bxi + � ⌘ BN�,�(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

shifted values y are passed to other network layers. The
normalized activations bx are internal to our transformation,
but their presence is crucial. The distributions of values
of any bx has the expected value of 0 and the variance of
1, as long as the elements of each mini-batch are sampled
from the same distribution, and if we neglect ✏. This can be
seen by observing that

Pm
i=1 bxi = 0 and 1

m

Pm
i=1 bx2

i = 1,
and taking expectations. Each normalized activation bx(k)

can be viewed as an input to a sub-network composed of
the linear transform y(k) = �(k)bx(k) + �(k), followed by
the other processing done by the original network. These
sub-network inputs all have fixed means and variances, and
although the joint distribution of these normalized bx(k) can
change over the course of training, we expect that the intro-
duction of normalized inputs accelerates the training of the
sub-network and, consequently, the network as a whole.

During training we need to backpropagate the gradient of
loss ` through this transformation, as well as compute the
gradients with respect to the parameters of the BN trans-
form. We use chain rule, as follows:

@`
@bxi

= @`
@yi

· �
@`
@�2

B
=

Pm
i=1

@`
@bxi

· (xi � µB) · �1
2 (�2

B + ✏)�3/2

@`
@µB

=
Pm

i=1
@`
@bxi

· �1p
�2
B+✏

@`
@xi

= @`
@bxi

· 1p
�2
B+✏

+ @`
@�2

B
· 2(xi�µB)

m + @`
@µB

· 1
m

@`
@� =

Pm
i=1

@`
@yi

· bxi

@`
@� =

Pm
i=1

@`
@yi

Thus, BN transform is a differentiable transformation that
introduces normalized activations into the network. This
ensures that as the model is training, layers can continue
learning on input distributions that exhibit less internal co-
variate shift, thus accelerating the training. Furthermore,

the learned affine transform applied to these normalized ac-
tivations allows the BN transform to represent the identity
transformation and preserves the network capacity.

3.1. Training and Inference with Batch-Normalized

Networks

To Batch-Normalize a network, we specify a subset of ac-
tivations and insert the BN transform for each of them, ac-
cording to Alg. 1. Any layer that previously received x
as the input, now receives BN(x). A model employing
Batch Normalization can be trained using batch gradient
descent, or Stochastic Gradient Descent with a mini-batch
size m > 1, or with any of its variants such as Adagrad
(Duchi et al., 2011). The normalization of activations that
depends on the mini-batch allows efficient training, but is
neither necessary nor desirable during inference; we want
the output to depend only on the input, deterministically.
For this, once the network has been trained, we use the
normalization

bx =
x� E[x]p
Var[x] + ✏

using the population, rather than mini-batch, statistics. Ne-
glecting ✏, these normalized activations have the same
mean 0 and variance 1 as during training. We use the unbi-
ased variance estimate Var[x] = m

m�1 · EB[�2
B], where the

expectation is over training mini-batches of size m and �2
B

are their sample variances. Using moving averages instead,
we can track the accuracy of a model as it trains. Since the
means and variances are fixed during inference, the nor-
malization is simply a linear transform applied to each ac-
tivation. It may further be composed with the scaling by
� and shift by �, to yield a single linear transform that re-
places BN(x). Algorithm 2 summarizes the procedure for
training batch-normalized networks.

3.2. Batch-Normalized Convolutional Networks

Batch Normalization can be applied to any set of activa-
tions in the network. Here, we focus on transforms that
consist of an affine transformation followed by an element-
wise nonlinearity:

z = g(Wu + b)

where W and b are learned parameters of the model, and
g(·) is the nonlinearity such as sigmoid or ReLU. This
formulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizing x = Wu + b. We could have
also normalized the layer inputs u, but since u is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast, Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-

Batch Normalization



Comments on Batch Normalization

• First three steps are just like standardization of input data, but 
with respect to only the data in mini-batch.  Can take derivative 
and incorporate the learning of last step parameters into 
backpropagation.

• Note last step can completely un-do previous 3 steps

• But if so this un-doing is driven by the later layers, not  the 
earlier layers; later layers get to “choose” whether they want 
standard normal inputs or not
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[1] Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift.  Ioffe, Szegedy. ICML 2015

But also:
[2] How Does Batch Normalization Help Optimization?  Santurkar et al. NeurIPS
2018



What regularizations are frequently used?

• 𝑙M regularization
• Early stopping
• Dropout/Batch Normalization

• Data augmentation if the transformations known/easy to 
implement



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 
Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, 

Elad Hazan, Tom Dietterich, and Pedro Domingos. 


