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Goals for the lecture

you should understand the following concepts
« the reinforcement learning task
« Markov decision process
« value functions
« Q functions
« value iteration
« Qlearning
« exploration vs. exploitation tradeoff
« compact representations of Q functions
« reinforcement learning example



Reinforcement learning (RL) @

Task of an agent embedded in an environment

repeat forever
1) sense world

2) reason

3) choose an action to perform

4) get feedback (usually a reward in R)
5) learn

the environment may be the physical world or an artificial one

AlphaGo Zero

Starting fromseratch




Reinforcement learning

set of states S
set of actions A

at each time ¢, agent observes state
s, € S then chooses action g, € A

then receives reward r, and moves
to state s,. ;.

agent

state/ /‘rewa rd

\ action

environment
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RL as Markov decision process (MDP)  ({j

 Markov assumption
P(s, 18,058, 1,0, ,...) = P(s,,, | 5,a,)

agent

state/‘ /‘reward \ action

 also assume reward is Markovian

environment
P(r, |s,a,s_,a,_,..)=P,|s,a,)

So —> 5 - §;) —>

Goal: learn a policy : § — A for choosing actions that maximizes
E[r,+mw +7’r,+..] where0<y<l

for every possible starting state s,



The grid world

* As arunning example:
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« each arrow represents an action a and the associated
number represents deterministic reward r(s, a)



Value function for a policy
* given a policy m: § — A define

(0.0)
Vr (S) — Zj,fE[,;] assuming action sequence chosen
p—r according to  starting at state s

« we want the optimal policy ©t" where

" =argmax_V7(s) foralls

« we’ll denote the value function for this optimal policy as V*(s).



Value function for a policy &

« Suppose w is shown by red arrows, vy =0.9
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V7(s) values are shown in red

« The Bellman’s equation (for deterministic transition):

V™(s) =r(s,m(s)) + V" (s)



Value function for an optimal policy wt* @

» Suppose m* is shown by red arrows, y =0.9
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V*(s) values are shown in red

« The Bellman’s equation (for deterministic transition):

V™(s) =r(s,m(s)) + V" (s)



Using a value function

If we know V*(s), r(s,, a),and P(s,l s, ;,a, ;)
we can compute t*(s)

7 (s,)=arg max{r(st,a) + Q/Z P(s,., =5 St,a)V*(S):|

acA seS



Value iteration for learning V'(s)

initialize V(s) arbitrarily
loop until policy good enough

{

loop for s €S

{

loop fora €A
' 0(s.a) « rs.a)+ S P(s' s, a)V (5')
} s'eS

} V(s) < max, A Q(s,a)

}

o



Value iteration for learning V*(s)

* V(s) converges to V*(s)

» works even if we randomly traverse environment instead of
looping through each state and action methodically

» but we must visit each state infinitely often

 implication: we can do online learning as an agent roams around
its environment

« assumes we have a model of the world: i.e. know P(s,! s, a, ;)

« What if we don’t?



Using a Q function
define a new function, closely related to V*
V' (s) « Elr(s, 7 (o) |+ 7B, 7 ()]

O(s.a) <« E[r(s,a)|+yE,. [ (s")]

if agent knows Q(s, a), it can choose optimal action without knowing P(s’ |
S, Q)

72*(5) < argmax A QO(s,a) V*(S) < max, 0(s,a)

and it can learn Q(s, a) without knowing P(s’ | s, a)



O values
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O learning for deterministic worlds @

for each s, a initialize table entry O(s,a) < 0
observe current state s

do forever
select an action ¢ and execute it

receive immediate reward r
observe the new state s’
update table entry
Q(s,a) < r+ymax, Q(S',a')

A Y



Updating O
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O learning for nondeterministic worlds @

for each s, a initialize table entry Q(S,a) <« 0
observe current state s

do forever
select an action ¢ and execute it

receive immediate reward r
observe the new state s’
update table entry
0,(s,a) < (1-a,)0, ,(s,a) + &, |+ y max,. 0, ,(s',a")]

)

S < S
where «a, is a parameter dependent 1
on the number of visits to the given a, = —
(s, @) pair 1+ visits (s,a)




Convergence of Q learning

O learning will converge to the correct Q function
* in the deterministic case

* in the nondeterministic case (using the update rule just
presented)

* in practice it is likely to take many, many iterations



(J’svs. V’s

0
V —>
2}
v

» Which action do we choose when we’re in a given state?

* V’s (model-based)

* need to have a ‘next state’ function to generate all possible
states

» choose next state with highest V value.

* 0’s (model-free)
* need only know which actions are legal
 generally choose next state with highest O value.



Exploration vs. Exploitation

* in order to learn about better alternatives, we shouldn’t always follow
the current policy (exploitation)

« sometimes, we should select random actions (exploration)

« one way to do this: select actions probabilistically according to:

A

CQ(Saai)
P(ai |S) —

CQ(s,aj)
J

where ¢ > 0 is a constant that determines how strongly selection
favors actions with higher Q values

o



O learning with a table

As described so far, Q learning entails filling in a huge table

states

So S AY) Su N\
aj
a;

| a; Atable is a very
actions .. Q(sz, az) verbose way to
represent a function

Ay

y




Representing O functions more compactly @

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of <
the state (s)

each input unit encodes
a property of the state
(e.g., a sensor value)



Why use a compact QO function?

Full O table may not fit in memory for realistic problems

2. Can generalize across states, thereby speeding up
convergence
I.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use a=1

2. Convergence proofs only apply to O tables

3. Some work on bounding errors caused by using compact

representations (e.g. Singh & Yee, Machine Learning 1994)

o



O tables vs. O nets

Given: 100 Boolean-valued features
10 possible actions

Size of O table
10 x 2190 entries

Size of O net (assume 100 hidden units)
100 x 100 + 100 x 10 = 11,000 weights

weights between weights between
inputs and HU's HU’s and outputs




O learning with function approximation ()

1. measure sensors, sense state s,
predict Q (s,,a) for each action a

select action a to take (with randomization to ensure
exploration)

apply action « in the real world

w N

sense new state s; and immediate reward r
L] ’ L] L] A '
calculate action a’ that maximizes Qn (Sl’a )

N

train with new instance

X =35,

y <« (1- a)Q(SO,a) +a|r + ymax, Q(sl,a')]

Calculate Q-value you would have put into Q-table, and use
it as the training label



ML example: reinforcement learning to control @
an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/



Stanford autonomous helicopter

sensing the helicopter’s state
« orientation sensor
accelerometer
rate gyro
magnetometer

« GPS receiver (“2cm accuracy as long as its antenna is pointing
towards the sky”)

e ground-based cameras

actions to control the helicopter

Antitorque

Pedals
Collective



Experimental setup for helicopter )

1. Expert pilot demonstrates the airshow several times

2. Learn areward function based on desired trajectory
3. Learn a dynamics model

4. Find the optimal control policy for learned reward and dynamics
model

5. Autonomously fly the airshow
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6. Learn an improved dynamics model. Go back to step 4



Learning dynamics model P(s,, ; | s,, a) @

» state represented by helicopter’s
position (x,y,z)
velocity (J'c,y',z')

angular velocity (a)x ,a)y ,a)z)

« action represented by manipulations of 4 controls
(ul,uz,u3,u4)

« dynamics model predicts accelerations as a function of current state
and actions

« accelerations are integrated to compute the predicted next state



Learning dynamics model P(s,, ; | s,, a) @

X' =Ax"+g"+w,

-"b—Ay + g, + D, +w,

..h

dynamics Z'=Az2"+g +Cu, +D,

model (D_li = B.w f’ + Clul + D, + W,
@, = B,w; + Cyu, + D, +w, ,
@, = Bw; +Cu, +D, +w, .

A, B, C, D represent model parameters
g represents gravity vector

w’s are random variables representing noise and unmodeled effects

linear regression task!



Learning a desired trajectory @

* repeated expert demonstrations are often suboptimal in different ways
* given a set of M demonstrated trajectories

for j=0,..,N—1k=0,.,M—1

k
e
yj_k
J

action on jih step of trajectory k state on jt" step of trajectory k

 try to infer the implicit desired trajectory

_
S

z,=| fort=0,....H
ut




Learning a desired trajectory
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colored lines: demonstrations of two loops
black line: inferred trajectory
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Figure from Coates et al., CACM 2009



Learning reward function

« EM is used to infer desired trajectory from set of demonstrated
trajectories

« The reward function is based on deviations from the desired trajectory



Finding the optimal control policy @

» finding the control policy is a reinforcement learning task

n’ < argmax_E Zr(st,a) | 7
t

 RL learning methods described earlier don’t quite apply because state and
action spaces are both continuous

« A special type of Markov decision process in which the optimal policy can be
found efficiently

* reward is represented as a linear function of state and action vectors
» next state is represented as a linear function of current state and action
vectors

« They use an iterative approach that finds an approximate solution because the
reward function used is quadratic



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Yingyu Liang, Mark Crawen, David
DO Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom

\\ , Di%tterich, and Pedro Domingos.
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