Le

ment

force

Madison

CS 760@UW-

T

. vwﬂill
—r

Goals for the lecture

you should understand the following concepts
« the reinforcement learning task
« Markov decision process
« value functions
« Q functions
« value iteration
« Qlearning
« exploration vs. exploitation tradeoff
« compact representations of Q functions
« reinforcement learning example

Reinforcement learning (RL) @

Task of an agent embedded in an environment

repeat forever
1) sense world

2) reason

3) choose an action to perform

4) get feedback (usually a reward in R)
5) learn

the environment may be the physical world or an artificial one

AlphaGo Zero

Starting fromseratch

Reinforcement learning

set of states S
set of actions A

at each time ¢, agent observes state
s, € S then chooses action g, € A

then receives reward r, and moves
to state s,. ;.

agent

state/ /‘rewa rd

\ action

environment

So —> 57

RL as Markov decision process (MDP) ({j

 Markov assumption
P(s, 18,058, 1,0, ,...) = P(s,,, | 5,a,)

agent

state/‘ /‘reward \ action

 also assume reward is Markovian

environment
P(r, |s,a,s_,a,_,..)=P,|s,a,)

So —> 5 - §;) —>

Goal: learn a policy : § — A for choosing actions that maximizes
E[r,+mw +7’r,+..] where0<y<l

for every possible starting state s,

The grid world

* As arunning example:

0
0 100 D
— > —t >

G
0 |
|

100

—>
0

« each arrow represents an action a and the associated
number represents deterministic reward r(s, a)

Value function for a policy
* given a policy m: § — A define

(0.0)
Vr (S) — Zj,fE[,;] assuming action sequence chosen
p—r according to starting at state s

« we want the optimal policy ©t" where

" =argmax_V7(s) foralls

« we’ll denote the value function for this optimal policy as V*(s).

Value function for a policy &

« Suppose w is shown by red arrows, vy =0.9

73 0 81 100 ‘ >0
0 0

e
1o 110 1
ol} ol 1 100
0 0
— > >
<1 <
66 0 90 0 100

V7(s) values are shown in red

« The Bellman’s equation (for deterministic transition):

V™(s) =r(s,m(s)) + V" (s)

Value function for an optimal policy wt* @

» Suppose m* is shown by red arrows, y =0.9

90 o| 100 100 (P
0 0

e
110 1109 1
ol} ol 1 100
0 0
—> >
<1 <
81 0 90 0 100

V*(s) values are shown in red

« The Bellman’s equation (for deterministic transition):

V™(s) =r(s,m(s)) + V" (s)

Using a value function

If we know V*(s), r(s,, a),and P(s,l s, ;,a, ;)
we can compute t*(s)

7 (s,)=arg max{r(st,a) + Q/Z P(s,., =5 St,a)V*(S):|

acA seS

Value iteration for learning V'(s)

initialize V(s) arbitrarily
loop until policy good enough

{

loop for s €S

{

loop fora €A
' 0(s.a) « rs.a)+ S P(s' s, a)V (5')
} s'eS

} V(s) < max, A Q(s,a)

}

o

Value iteration for learning V*(s)

* V(s) converges to V*(s)

» works even if we randomly traverse environment instead of
looping through each state and action methodically

» but we must visit each state infinitely often

 implication: we can do online learning as an agent roams around
its environment

« assumes we have a model of the world: i.e. know P(s,! s, a, ;)

« What if we don’t?

Using a Q function
define a new function, closely related to V*
V' (s) « Elr(s, 7 (o) |+ 7B, 7 ()]

O(s.a) <« E[r(s,a)|+yE,. [(s")]

if agent knows Q(s, a), it can choose optimal action without knowing P(s’ |
S, Q)

72*(5) < argmax A QO(s,a) V*(S) < max, 0(s,a)

and it can learn Q(s, a) without knowing P(s’ | s, a)

O values

0
ol 100 | D 9 _] 100 _| D
< G @— G
0 0
1o 10 1 1 1 1
olV oly | 100 N IV |
0 0
—> 4> —> —>
D N 81 <€T— 90 <T— 100
0 0
r(s, a) (immediate reward) values V*(s) values

902 100| (7
8

< G
1 0
ALT2 A 81 A
81 Iy 90 1V | 100
81 90
b g b g
72 81

Q(s, a) values

O learning for deterministic worlds @

for each s, a initialize table entry O(s,a) < 0
observe current state s

do forever
select an action ¢ and execute it

receive immediate reward r
observe the new state s’
update table entry
Q(s,a) < r+ymax, Q(S',a')

A Y

Updating O

72
© =

=
63

100

|81

v

right

S

Q(S19aright) —r+ ymaxa' Q(Szﬂa')

< 0+0.9max{63,81,100}
<~ 90

O learning for nondeterministic worlds @

for each s, a initialize table entry Q(S,a) <« 0
observe current state s

do forever
select an action ¢ and execute it

receive immediate reward r
observe the new state s’
update table entry
0,(s,a) < (1-a,)0, ,(s,a) + &, |+ y max,. 0, ,(s',a")]

)

S < S
where «a, is a parameter dependent 1
on the number of visits to the given a, = —
(s, @) pair 1+ visits (s,a)

Convergence of Q learning

O learning will converge to the correct Q function
* in the deterministic case

* in the nondeterministic case (using the update rule just
presented)

* in practice it is likely to take many, many iterations

(J’svs. V’s

0
V —>
2}
v

» Which action do we choose when we’re in a given state?

* V’s (model-based)

* need to have a ‘next state’ function to generate all possible
states

» choose next state with highest V value.

* 0’s (model-free)
* need only know which actions are legal
 generally choose next state with highest O value.

Exploration vs. Exploitation

* in order to learn about better alternatives, we shouldn’t always follow
the current policy (exploitation)

« sometimes, we should select random actions (exploration)

« one way to do this: select actions probabilistically according to:

A

CQ(Saai)
P(ai |S) —

CQ(s,aj)
J

where ¢ > 0 is a constant that determines how strongly selection
favors actions with higher Q values

o

O learning with a table

As described so far, Q learning entails filling in a huge table

states

So S AY) Su N\
aj
a;

| a; Atable is a very
actions .. Q(sz, az) verbose way to
represent a function

Ay

y

Representing O functions more compactly @

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of <
the state (s)

each input unit encodes
a property of the state
(e.g., a sensor value)

Why use a compact QO function?

Full O table may not fit in memory for realistic problems

2. Can generalize across states, thereby speeding up
convergence
I.e. one instance ‘fills’ many cells in the Q table

Notes

1. When generalizing across states, cannot use a=1

2. Convergence proofs only apply to O tables

3. Some work on bounding errors caused by using compact

representations (e.g. Singh & Yee, Machine Learning 1994)

o

O tables vs. O nets

Given: 100 Boolean-valued features
10 possible actions

Size of O table
10 x 2190 entries

Size of O net (assume 100 hidden units)
100 x 100 + 100 x 10 = 11,000 weights

weights between weights between
inputs and HU's HU’s and outputs

O learning with function approximation ()

1. measure sensors, sense state s,
predict Q (s,,a) for each action a

select action a to take (with randomization to ensure
exploration)

apply action « in the real world

w N

sense new state s; and immediate reward r
L] ’ L] L] A '
calculate action a’ that maximizes Qn (Sl’a)

N

train with new instance

X =35,

y <« (1- a)Q(SO,a) +a|r + ymax, Q(sl,a')]

Calculate Q-value you would have put into Q-table, and use
it as the training label

ML example: reinforcement learning to control @
an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/

Stanford autonomous helicopter

sensing the helicopter’s state
« orientation sensor
accelerometer
rate gyro
magnetometer

« GPS receiver (“2cm accuracy as long as its antenna is pointing
towards the sky”)

e ground-based cameras

actions to control the helicopter

Antitorque

Pedals
Collective

Experimental setup for helicopter)

1. Expert pilot demonstrates the airshow several times

2. Learn areward function based on desired trajectory
3. Learn a dynamics model

4. Find the optimal control policy for learned reward and dynamics
model

5. Autonomously fly the airshow

- v - 11aedill
a il
o 228

SR e i
-,;M«Q—;‘n,_._@_.ﬂ'

6. Learn an improved dynamics model. Go back to step 4

Learning dynamics model P(s,, ; | s,, a) @

» state represented by helicopter’s
position (x,y,z)
velocity (J'c,y',z')

angular velocity (a)x ,a)y ,a)z)

« action represented by manipulations of 4 controls
(ul,uz,u3,u4)

« dynamics model predicts accelerations as a function of current state
and actions

« accelerations are integrated to compute the predicted next state

Learning dynamics model P(s,, ; | s,, a) @

X' =Ax"+g"+w,

-"b—Ay + g, + D, +w,

..h

dynamics Z'=Az2"+g +Cu, +D,

model (D_li = B.w f’ + Clul + D, + W,
@, = B,w; + Cyu, + D, +w, ,
@, = Bw; +Cu, +D, +w, .

A, B, C, D represent model parameters
g represents gravity vector

w’s are random variables representing noise and unmodeled effects

linear regression task!

Learning a desired trajectory @

* repeated expert demonstrations are often suboptimal in different ways
* given a set of M demonstrated trajectories

for j=0,..,N—1k=0,.,M—1

k
e
yj_k
J

action on jih step of trajectory k state on jt" step of trajectory k

 try to infer the implicit desired trajectory

_
S

z,=| fort=0,....H
ut

Learning a desired trajectory

Altitude (m)

=
a1

=
(@»]

1

o

I
an

colored lines: demonstrations of two loops
black line: inferred trajectory

I "".- ' 40 |
B / "'{ 0”.' : {:"o I‘ —_
f g :‘. \ .“l.":; I c
LI s ‘ | e - n
: ; £ R 5 30
e 7 et =
“_. + \ L/ / :“: | g
\ . SR VIR /4
L R A VY .
‘ \\ —"",;;——,,_ _V/:,.-‘“L——'-.o—-j"' J4 o “" 20t
RN N o MO
of‘._:,_:'* _— . e Soe -
- *e "’":“}W”“ e
— "0..,_.._10" . f
——— - |
1 1 B - L 1 10 . . - :
10 20 30 40 50 -5 0 5 10 15
North (m) East (m)

Figure from Coates et al., CACM 2009

Learning reward function

« EM is used to infer desired trajectory from set of demonstrated
trajectories

« The reward function is based on deviations from the desired trajectory

Finding the optimal control policy @

» finding the control policy is a reinforcement learning task

n’ < argmax_E Zr(st,a) | 7
t

 RL learning methods described earlier don’t quite apply because state and
action spaces are both continuous

« A special type of Markov decision process in which the optimal policy can be
found efficiently

* reward is represented as a linear function of state and action vectors
» next state is represented as a linear function of current state and action
vectors

« They use an iterative approach that finds an approximate solution because the
reward function used is quadratic

THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Yingyu Liang, Mark Crawen, David
DO Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom

\\ , Di%tterich, and Pedro Domingos.

-

