
Reinforcement Learning

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts
• the reinforcement learning task
• Markov decision process
• value functions
• Q functions
• value iteration
• Q learning
• exploration vs. exploitation tradeoff
• compact representations of Q functions
• reinforcement learning example

2

Reinforcement learning (RL)
Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually a reward in ℝ)
5) learn

the environment may be the physical world or an artificial one

3

Reinforcement learning

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• set of states S
• set of actions A
• at each time t, agent observes state

st ∈ S then chooses action at ∈ A
• then receives reward rt and moves

to state st+1.

5

RL as Markov decision process (MDP)

• Markov assumption

• also assume reward is Markovian

Goal: learn a policy π : S → A for choosing actions that maximizes

for every possible starting state s0 6

),|(,...),,,|(1111 tttttttt assPasassP +--+ =

),|(,...),,,|(1111 tttttttt asrPasasrP +--+ =

10 where...][2
2

1 <£+++ ++ ggg ttt rrrE

agent

environment

state reward

s0 s1 s2

a0 a1 a2

r0 r1 r2

action

The grid world

G

0
0

0

0

0

0

0

0

100

0

0

100

0

• As a running example:

• each arrow represents an action a and the associated
number represents deterministic reward r(s, a)

77

Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen
according to π starting at state s

• we want the optimal policy π* where

 π
* = argmaxπ V

π (s) for all s

• we’ll denote the value function for this optimal policy as V*(s).

8

å
¥

=

=
0

][)(
t

t
t rEsV gp

Value function for a policy π

• Suppose π is shown by red arrows, γ = 0.9

G

0
0

0

0

0

0

0

0

100

0

0

100

0

Vπ(s) values are shown in red

100

0

90

8173

66

9

• The Bellman’s equation (for deterministic transition):

V ⇡(s) = r(s,⇡(s)) + �V ⇡(s0)
<latexit sha1_base64="1YMNnmORAdhGZX3UjfPNFuwFXaA=">AAACEnicbVDLSgMxFM3UV62vUZdugkXsoJSZKuhGKLpxWcE+oDOWTJppQ5PMkGSEUvoNbvwVNy4UcevKnX9j2s5CqwcunJxzL7n3hAmjSrvul5VbWFxaXsmvFtbWNza37O2dhopTiUkdxyyWrRApwqggdU01I61EEsRDRprh4GriN++JVDQWt3qYkICjnqARxUgbqWM7jTs/oSXlwAsoS+p49nDgEfR7iHMEM//Q6dhFt+xOAf8SLyNFkKHWsT/9boxTToTGDCnV9txEByMkNcWMjAt+qkiC8AD1SNtQgThRwWh60hgeGKULo1iaEhpO1Z8TI8SVGvLQdHKk+2rem4j/ee1UR+fBiIok1UTg2UdRyqCO4SQf2KWSYM2GhiAsqdkV4j6SCGuTYsGE4M2f/Jc0KmXvpFy5OS1WL7M48mAP7IMS8MAZqIJrUAN1gMEDeAIv4NV6tJ6tN+t91pqzspld8AvWxzcDRpqM</latexit>

Value function for an optimal policy π*

• Suppose π* is shown by red arrows, γ = 0.9

G

0
0

0

0

0

0

0

0

100

0

0

100

0

V*(s) values are shown in red

100

0

90

10090

81

10

• The Bellman’s equation (for deterministic transition):

V ⇡(s) = r(s,⇡(s)) + �V ⇡(s0)
<latexit sha1_base64="1YMNnmORAdhGZX3UjfPNFuwFXaA=">AAACEnicbVDLSgMxFM3UV62vUZdugkXsoJSZKuhGKLpxWcE+oDOWTJppQ5PMkGSEUvoNbvwVNy4UcevKnX9j2s5CqwcunJxzL7n3hAmjSrvul5VbWFxaXsmvFtbWNza37O2dhopTiUkdxyyWrRApwqggdU01I61EEsRDRprh4GriN++JVDQWt3qYkICjnqARxUgbqWM7jTs/oSXlwAsoS+p49nDgEfR7iHMEM//Q6dhFt+xOAf8SLyNFkKHWsT/9boxTToTGDCnV9txEByMkNcWMjAt+qkiC8AD1SNtQgThRwWh60hgeGKULo1iaEhpO1Z8TI8SVGvLQdHKk+2rem4j/ee1UR+fBiIok1UTg2UdRyqCO4SQf2KWSYM2GhiAsqdkV4j6SCGuTYsGE4M2f/Jc0KmXvpFy5OS1WL7M48mAP7IMS8MAZqIJrUAN1gMEDeAIv4NV6tJ6tN+t91pqzspld8AvWxzcDRpqM</latexit>

Using a value function

If we know V*(s), r(st, a), and P(st | st-1, at-1)
we can compute π*(s)

11

ú
û

ù
ê
ë

é =+= å
Î

+
Î Ss

ttt
Aa

t sVasssPasrs)(),|(),(maxarg)(*
1

* gp

Value iteration for learning V*(s)

initialize V(s) arbitrarily
loop until policy good enough
{

loop for s ∈ S
{

loop for a ∈ A
{

}

}
}

12

å
Î

+¬
Ss

sVassPasrasQ
'

)'(),|'(),(),(g

),(max)(asQsV a¬

Value iteration for learning V*(s)

• V(s) converges to V*(s)

• works even if we randomly traverse environment instead of
looping through each state and action methodically

• but we must visit each state infinitely often

• implication: we can do online learning as an agent roams around
its environment

• assumes we have a model of the world: i.e. know P(st | st-1, at-1)

• What if we don’t?

13

Using a Q function

define a new function, closely related to V*

if agent knows Q(s, a), it can choose optimal action without knowing P(s’ |
s, a)

and it can learn Q(s, a) without knowing P(s’ | s, a)

14

[] [])'())(,()(*
)(,|'

**
* sVEssrEsV sss p

gp +¬

[] [])'(),(),(*
,|' sVEasrEasQ assg+¬

),(max)(* asQsV a¬),(maxarg)(* asQs a¬p

Q values

G

0
0

0

0

0

0

0
0

100

0

0

100

0

r(s, a) (immediate reward) values

G

100

0

90

10090

81
81

72
81

81

72

90

81

Q(s, a) values

G

100

0

90

10090

81

V*(s) values

15

Q learning for deterministic worlds

for each s, a initialize table entry
observe current state s
do forever

select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

s← s’

16

)','(ˆmax),(ˆ ' asQrasQ ag+¬

0),(ˆ ¬asQ

Updating Q

10072

63
81

10090

63
81

aright

17

90
}100,81,63max{9.00

)',(ˆmax),(ˆ
2'1

¬
+¬

+¬ asQrasQ aright g

Q learning for nondeterministic worlds

for each s, a initialize table entry
observe current state s
do forever

select an action a and execute it
receive immediate reward r
observe the new state s’
update table entry

s← s’

α n =

1
1+ visitsn (s,a)

where αn is a parameter dependent
on the number of visits to the given
(s, a) pair

18

0),(ˆ ¬asQ

[])','(ˆmax),(ˆ)1(),(ˆ 1'1 asQrasQasQ nannnn -- ++-¬ gaa

Convergence of Q learning

• Q learning will converge to the correct Q function

• in the deterministic case

• in the nondeterministic case (using the update rule just
presented)

• in practice it is likely to take many, many iterations

19

Q’s vs. V’s

• Which action do we choose when we’re in a given state?
• V’s (model-based)

• need to have a ‘next state’ function to generate all possible
states

• choose next state with highest V value.
• Q’s (model-free)

• need only know which actions are legal
• generally choose next state with highest Q value.

V V

V

Q

Q

20

Exploration vs. Exploitation

• in order to learn about better alternatives, we shouldn’t always follow
the current policy (exploitation)

• sometimes, we should select random actions (exploration)

• one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection
favors actions with higher Q values

21

å
=

j

asQ

asQ

i
j

i

c
csaP

),(ˆ

),(ˆ

)|(

Q learning with a table

As described so far, Q learning entails filling in a huge table

A table is a very
verbose way to
represent a function

s0 s1 s2 . . . sn

a1

a2

a3

.

.

.
ak

. . . Q(s2, a3)

.

.

.

actions

states

22

Q(s, a1)

Q(s, a2)

Q(s, ak)

Representing Q functions more compactly

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of
the state (s)

each input unit encodes
a property of the state
(e.g., a sensor value)

23

Why use a compact Q function?

1. Full Q table may not fit in memory for realistic problems
2. Can generalize across states, thereby speeding up

convergence
i.e. one instance ‘fills’ many cells in the Q table

Notes
1. When generalizing across states, cannot use α=1
2. Convergence proofs only apply to Q tables
3. Some work on bounding errors caused by using compact

representations (e.g. Singh & Yee, Machine Learning 1994)

24

Given: 100 Boolean-valued features
10 possible actions

Size of Q table
10 × 2100 entries

Size of Q net (assume 100 hidden units)
100 × 100 + 100 × 10 = 11,000 weights

Q tables vs. Q nets

weights between
inputs and HU’s

weights between
HU’s and outputs

25

Q learning with function approximation

1. measure sensors, sense state s0

2. predict for each action a
3. select action a to take (with randomization to ensure

exploration)
4. apply action a in the real world
5. sense new state s1 and immediate reward r
6. calculate action a’ that maximizes
7. train with new instance

Q̂n (s0,a)

Q̂n (s1,a ')

27

[])',(ˆmax),(ˆ)1(1'0

0

asQrasQy

s

agaa ++-¬

=x

Calculate Q-value you would have put into Q-table, and use
it as the training label

ML example: reinforcement learning to control
an autonomous helicopter

video of Stanford University autonomous helicopter from http://heli.stanford.edu/28

Stanford autonomous helicopter
sensing the helicopter’s state

• orientation sensor
accelerometer
rate gyro
magnetometer

• GPS receiver (“2cm accuracy as long as its antenna is pointing
towards the sky”)

• ground-based cameras

actions to control the helicopter

1. Expert pilot demonstrates the airshow several times

2. Learn a reward function based on desired trajectory
3. Learn a dynamics model
4. Find the optimal control policy for learned reward and dynamics

model
5. Autonomously fly the airshow

6. Learn an improved dynamics model. Go back to step 4

Experimental setup for helicopter

Learning dynamics model P(st+1 | st, a)
• state represented by helicopter’s

x, y, z()

 !x, !y, !z()
ω x ,ω y ,ω z()

u1,u2,u3,u4()
• action represented by manipulations of 4 controls

position

velocity

angular velocity

• dynamics model predicts accelerations as a function of current state
and actions

• accelerations are integrated to compute the predicted next state

Learning dynamics model P(st+1 | st, a)

• A, B, C, D represent model parameters
• g represents gravity vector
• w’s are random variables representing noise and unmodeled effects

• linear regression task!

dynamics
model

 !!z
b

Learning a desired trajectory
• repeated expert demonstrations are often suboptimal in different ways
• given a set of M demonstrated trajectories

state on jth step of trajectory kaction on jth step of trajectory k

• try to infer the implicit desired trajectory

1,...,0,1,...,0for -=-=ú
û

ù
ê
ë

é
= MkNj
u
s

y k
j

k
jk

j

,...,Ht
u
s

z
t

t
t 0for *

*

=ú
û

ù
ê
ë

é
=

Learning a desired trajectory

Figure from Coates et al.,CACM 2009

colored lines: demonstrations of two loops
black line: inferred trajectory

Learning reward function

• EM is used to infer desired trajectory from set of demonstrated
trajectories

• The reward function is based on deviations from the desired trajectory

Finding the optimal control policy
• finding the control policy is a reinforcement learning task

• RL learning methods described earlier don’t quite apply because state and
action spaces are both continuous

• A special type of Markov decision process in which the optimal policy can be
found efficiently
• reward is represented as a linear function of state and action vectors
• next state is represented as a linear function of current state and action

vectors
• They use an iterative approach that finds an approximate solution because the

reward function used is quadratic

ú
û

ù
ê
ë

é¬ å pp p |),(maxarg*

t
t asrE

THANK YOU
Some of the slides in these lectures have been adapted/borrowed
from materials developed by Yingyu Liang, Mark Craven, David

Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom
Dietterich, and Pedro Domingos.

