


Goals for Part 1

you should understand the following concepts
« the margin
 the linear support vector machine
 the primal and dual formulations of SVM learning
e support vectors
« VC-dimension and maximizing the margin



Motivation



Linear classification

Class +1

Class -1

Assume perfect separation between the two
classes



Attempt @

 Given training data {(x;,y;): 1 < i < n} i.i.d. from distribution D

 Hypothesis y = sign(f,,(x)) = sign(w’”x)
cy=+1ifwlix>0
cy=—-1ifwlx<0

* Let’'s assume that we can optimize to find w



Multiple optimal solutions?

Class -1

Same on empirical loss;
Different on test/expected loss



What about w, ? )

o Class -1



What about w;? )
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Most confident: w, )
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Intuition: margin
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Margin



Margin )

* Lemma 1: x has distance 'ﬁvlvﬁl)' to the hyperplane f,, (x) =
wlix =0
Proof:

 w is orthogonal to the hyperplane

 The unit direction is ﬁ

T
» The projection of x is (L) x =

[Iwl|




Margin: with bias @

« Claim 1: w is orthogonal to the hyperplane f,, ,(x) = w'x + b =
0

Proof:
* pick any x; and x, on the hyperplane
wlix; +b=0

wlx, +b =0

° SO WT(X1 — xZ) =0



Margin: with bias

e Claim 2: 0 has distance —- to the hyperplane w'x + b = 0

IIWII
Proof:
* pick any x; the hyperplane

* Project x; to the unit direction — T to get the distance

IIW

T
w —b
. (“W”) X1 =0 since w/'x; + b =0



Margin: with bias

 Lemma 2: x has distance 'fvl‘;":’/(lf)l to the hyperplane f,, ,(x) =
wlix+b=0

Proof:

e Let x = x, + r——, then || is the distance

lwl|’

 Multiply both sides by w’ and add b
e Left hand side: w'x + b = f,,,(x)

WTW
* Right hand side: w'x, + r——+ b = 0 + r||w||

[lw]|



o

The notation here is:

y(x) = wlx + w,

Figure from Pattern Recognition
and Machine Learning, Bishop



Support Vector Machine (SVM)



SVM: objective

» Margin over all training data points:

» Since only want correct f,, ,, and recall y; € {+1, -1}, we have

. . yifw,b(xi)
Yy = min
i |wl]

- If f,, , incorrect on some x;, the margin is negative




SVM: objective

« Maximize margin over all training data points:

C Yifwp(xi) . yiw'x; + b)

maxy = max min = mMax min
w,b w,b L ||W|| w,b l

A bit complicated ...



SVM: simplified objective

» Observation: when (w, b) scaled by a factor ¢, the margin

unchanged
yi(ew"x; +¢cb)  yi(w'x; +b)

[[ew|] [wl]

* Let’'s consider a fixed scale such that

yirw'xp+b) =1
where x;- is the point closest to the hyperplane



SVM: simplified objective

* Let’'s consider a fixed scale such that

yrw'xp+b) =1
where x;- is the point closet to the hyperplane

« Now we have for all data
yiwlx; +b) > 1

and at least for one i the equality holds

* Then the margin is =

[lw]|



SVM: simplified objective

» Optimization simplified to ,
1
min 51wl

y;(wlx; +b) = 1,Vi

* How to find the optimum w*?
» Solved by Lagrange multiplier method



Lagrange multiplier



Lagrangian
» Consider optimization problem:
min f(w)

 Lagrangian:

Lw,B) = FW)+ ) fihi(w)

where [3;’s are called Lagrange multipliers



Lagrangian

» Consider optimization problem:
min f(w)

« Solved by setting derivatives of Lagrangian to 0

oL oL

0; —=0
aWi O,BL




Generalized Lagrangian

» Consider optimization problem:
min f(w)

gw)<0,vVli<i<k

» Generalized Lagrangian:

Low, @ B) = fW)+ ) awgi(w)+ ) fihy(w)
J

l

where «;, f;’s are called Lagrange multipliers



Generalized Lagrangian

« Consider the quantity:
Op(w) := max L(w,a,p)

af:a;=0
* Why?
8 (w) = {f (w), if w satisfies all the constraints
g +0o, if w does not satisfy the constraints

« SO0 minimizing f(w) is the same as minimizing 6, (w)

mln flw) = m1n Op(w) = m1n rﬁnaXOL(W a, )
;>



Lagrange duality

* The primal problem

o= mlnf(w) = min max L(w,a,B)
w apf:a;=0

* The dual problem
d*:= max minL(w,a, )

af:ai=z0 w

« Always true:



Lagrange duality

* The primal problem

p* = mlnf(w) = min rﬁnaXOL(W a,fB)
w oafa;
* The dual problem

d*:= max minL(w,a, )
af:ai=z0 w

* Interesting case: when do we have
d* =p*?



Lagrange duality

« Theorem: under proper conditions, there exists (w*, a*, B*)
such that

Moreover, (w*, a*, B*) satisfy Karush-Kuhn-Tucker (KKT)

conditions:
0L
= 0, a;gi(w) =0

(')Wl-
giw) <0, hj(w) =0, a; =0



Lagrange duality

« Theorem: under proper conditions, there exists (w*, a*, B*)
such that

complementarity

Moreover, (w*, a*, B*) satisfy Karush-Kyhn-Tucker (KKT)
conditions:
oL
=0} a;gi(w) =0

an'
giw) <0, hj(w) =0, a; =0



Lagrange duality @

« Theorem: under proper conditions, there exists (w*, a*, B*)
such that

= L(W*,a*,ﬁ*) — P*

dual constraints

primal constraints

satisfy Karush-Kuhn-T




Lagrange duality

* What are the proper conditions?

* A set of conditions (Slater conditions):
* f,gi convex, h; affine, and exists w satisfying all g;(w) < 0

* There exist other sets of conditions
« Check textbooks, e.g., Convex Optimization by Boyd and
Vandenberghe



SVM: optimization



SVM: optimization

» Optimization (Quadratic Programming):

n ~ | |2
min _| w |
w,b 2

yiwlx; + b) > 1,Vi

» Generalized Lagrangian:
1 2
L(w,b, a) =§||W|| — z a;[y;(w'x; + b) — 1]
i
where « is the Lagrange multiplier



SVM: optimization

« KKT conditions:

5
L_0>w = X2 a;yix; (1)

ow
d
==0,20=Yay (2

 Plug into L:
1
L(w,b,a) = X;a; — - X a;a;y;yixi xj (3)

combined with 0 = }}; o;y;,a; = 0



SVM: optimization W)

Only depend on inner

» Reduces to dual problem: products

1
Lw,b,a) = z a——= ) ;0 -yl-ijl-ij

» Since w = Y, a;y;x;, we have wix + b = Y, a;y;x/ x + b



Support Vectors

« final solution is a sparse linear combination of the training
instances

1.0

 those instances with a; >0
are called support vectors
 they lie on the margin
boundary
 solution NOT changed if

delete the instances with «; =
0

. support
vectors




Learning theory justification ]

|48 (log%/—ng + 1) + log%

error(h) < errory(h) + \/ —

error on true  training set \

distribution error VC: VC-dimension
of hypothesis class

» Vapnik showed a connection between the margin and VC
dimension

2
Ve < AR" <— constant dependent on training data

— marginp(h)

* thus to minimize the VC dimension (and to improve the error
bound) =» maximize the margin




Goals for Part 2

you should understand the following concepts
 soft margin SVM
* support vector regression
» the kernel trick
« polynomial kernel
» Gaussian/RBF kernel
 valid kernels and Mercer’s theorem
» kernels and neural networks



Variants: soft-margin and SVR



Hard-margin SVM

» Optimization (Quadratic Programming):

n ~ | |2
min _| w |
w,b 2

yiiwlx; +b) = 1,Vi



Soft-ma g in SVM [Cortes & Vapnik, Machine Learning 1995] @

« if the training instances are not linearly separable, the previous
formulation will fail

« we can adjust our approach by using slack variables (denoted
by (;) to tolerate errors

1 2

min o[ wi| +¢ ) ¢
l

yi(WTxi +b)=>1—-,{; =0,Vi

* C determines the relative importance of maximizing margin vs.
minimizing slack



The effect of C in soft-margin SVM

_1'-01.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010



Hinge loss

« when we covered neural nets, we talked about minimizing
squared loss and cross-entropy loss

« SVMs minimize hinge loss

4

. squared loss

loss (error)
when y=1

0/1 loss

0 hinge loss

model output h(x)



Support Vector Regression

» the SVM idea can also be
applied in regression tasks (w'x+b)—y=c¢

 an e-insensitive error
function specifies that a
training instance is well

explained if the model’s

// _ T _
prediction is within e of y; y—(w'x+b)=¢€

v



Support Vector Regression )

» Regression using slack variables (denoted by ¢;, ¢;) to tolerate
errors

1

2
min o lwll +¢) G+é
l

wix; +b) —y; < e+,
yi — (wWlx; +b) < e+ ¢

3, & = 0. \

slack variables allow predictions
for some training instances to be
off by more than ¢



Kernel methods



Features

¢ (x)
Color Histogram
Extract

features .
e T

mRed mGreen




Features

Z2

¢ (z1,22) — (23, V22120, 23)

e\ 2 v\ 2 . -
1 T z1 23
' — l _________ I — 1
( a ) ( b ) a? ' b2

X x X
D S~X X

SR G0

. 2
O O O a zl

Proper feature mapping can make non-linear to linear!



Recall: SVM dual form W)

Only depend on inner

» Reduces to dual problem: : products
L(w,b,a) = z a =5 ) oYX X

» Since w = Y, a;y;x;, we have wix + b = Y, a;y;x/ x + b



Features @

« Using SVM on the feature space {¢(x;)}: only need gl)(xl-)Tcl)(xj)

 Conclusion: no need to design ¢(-), only need to design

k(%) = )T d(x))



Polynomial kernels

 Fix degree d and constant c:

k(x,x") = (xTx' + ¢)“
* What are ¢(x)?
« Expand the expression to get ¢ (x)



Polynomial kernels

Vx,x' € R?,

K<X:X/) — (51?1:1’?’1 + :1:2:1752 + 0)2 —

[\
o~
N e

=
O DO

\/5 L1
\/2_C L1
\/2_(’ i)

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar




1.0
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SVMs with polynomial kernels

linear kernel polynomial degree 2 polynomial degree 5

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010
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Gaussian/RBF kernels

* Fix bandwidth o:
k(x,x") = exp(—||x — x’||2/202)
* Also called radial basis function (RBF) kernels

* What are ¢ (x)? Consider the un-normalized version
k'(x,x") = exp(x’x'/o?)
« Power series expansion:
+ oo .
(XTXI)L

oli!

k'(x,x") =



The RBF kernel illustrated

y = —1000

y =—100

04r

-041

-06

Andrew NQ)

(

Figures from openclassroom.stanford.edu
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Mercer’s condition for kenerls

« Theorem: k(x,x") has expan+scjoon

k@x) = ) g (bi(x')

if and only if for any function c(x),

[ [ ecx)ec(xDk(x,x)dxdx' =0

(Omit some math conditions for k and ¢)



Constructing new kernels

» Kernels are closed under positive scaling, sum, product,
pointwise limit, and composition with a power series
X7 akt(x,x")

« Example: k,(x,x"), k,(x,x") are kernels, then also is
k(x,x") =2k (x,x") + 3k,(x,x")

« Example: k,(x,x") is kernel, then also is
k(x,x") = exp(ki(x,x"))



Kernel algebra

» given a valid kernel, we can make new valid kernels using a variety of
operators

kernel composition mapping composition
k(x,v) = k,(x,9) + k, (x,v) p(x) = (¢, (x), 9,(x))
k(x,v) =7y k,(x,»), y >0 o) =y ¢,(x)

k(x,v) =k (x,v)k,(x,v) ¢,(x) = 9,,(x)p,; (x)
k(x,v)=x"Av, Aisp.sd. ¢(x)=L'x, where A= LL'

k(x,v) = f(x)f(v)k, (x,v) ¢(x) = f(x)¢,(x)



Kernels v.s. Neural networks



Features @

Color Histogram

Extract build
features - . hypothesls ¥ = W' ¢(x)

mRed mGreen



Features: part of the model )

Nonlinear model
A

build .
hypothesis v = W ¢(x)

|
Linear model



Polynomial kernels

Vx,x' € R?,

K<X:X/) — (51?1:1’?’1 + :1:2:1752 + 0)2 —
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Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar




Polynomial kernel SVM as two layer neural network @

y = sign(w' ¢ (x) + b)

First layer is fixed. If also learn first layer, it becomes two layer neural network



Comments on SVMs

» we can find solutions that are globally optimal (maximize the margin)

» because the learning task is framed as a convex optimization
problem

* no local minima, in contrast to multi-layer neural nets

 there are two formulations of the optimization: primal and dual
» dual represents classifier decision in terms of support vectors
» dual enables the use of kernel functions

* we can use a wide range of optimization methods to learn SVM
» standard quadratic programming solvers
« SMO [Platt, 1999]

* linear programming solvers for some formulations
o e

67



Comments on SVMs

 kernels provide a powerful way to
« allow nonlinear decision boundaries
* represent/compare complex objects such as strings and trees
* incorporate domain knowledge into the learning task

* using the kernel trick, we can implicitly use high-dimensional mappings
without explicitly computing them

« one SVM can represent only a binary classification task; multi-class
problems handled using multiple SVMs and some encoding

« empirically, SVMs have shown (close to) state-of-the art accuracy for many
tasks

* the kernel idea can be extended to other tasks (anomaly detection,
regression, etc.)

68



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Yingyu Liang, Mark Crawen, David
DO Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom

\\ , Di%tterich, and Pedro Domingos.
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