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Goals for Part 1

you should understand the following concepts
• the margin
• the linear support vector machine
• the primal and dual formulations of SVM learning
• support vectors
• VC-dimension and maximizing the margin
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Motivation



Linear classification

(𝑤∗)%𝑥 = 0

Class +1

Class -1

𝑤∗

(𝑤∗)%𝑥 > 0

(𝑤∗)%𝑥 < 0

Assume perfect separation between the two 
classes



Attempt

• Given training data 𝑥+, 𝑦+ : 1 ≤ 𝑖 ≤ 𝑛 i.i.d. from distribution 𝐷
• Hypothesis 𝑦 = sign(𝑓9 𝑥 ) = sign(𝑤%𝑥)

• 𝑦 = +1 if 𝑤%𝑥 > 0
• 𝑦 = −1 if 𝑤%𝑥 < 0

• Let’s assume that we can optimize to find 𝑤



Multiple optimal solutions?

Class +1

Class -1

𝑤< 𝑤=𝑤>

Same on empirical loss;
Different on test/expected loss



What about 𝑤>?

Class +1

Class -1

𝑤>

New test data



What about 𝑤=?

Class +1

Class -1

𝑤=

New test data



Most confident: 𝑤<

Class +1

Class -1

𝑤<

New test data



Intuition: margin

Class +1

Class -1

𝑤<

large margin



Margin



Margin

• Lemma 1: 𝑥 has distance |@A B |
| 9 |

to the hyperplane 𝑓9 𝑥 =
𝑤%𝑥 = 0

Proof:
• 𝑤 is orthogonal to the hyperplane
• The unit direction is 9

| 9 |

• The projection of 𝑥 is 9
9

%
𝑥 = @A(B)

| 9 |

𝑤
| 𝑤 |

𝑥

𝑤
𝑤

%

𝑥

0



Margin: with bias

• Claim 1: 𝑤 is orthogonal to the hyperplane 𝑓9,C 𝑥 = 𝑤%𝑥 + 𝑏 =
0

Proof:
• pick any 𝑥> and 𝑥< on the hyperplane
• 𝑤%𝑥> + 𝑏 = 0
• 𝑤%𝑥< + 𝑏 = 0

• So 𝑤%(𝑥> − 𝑥<) = 0



Margin: with bias

• Claim 2: 0 has distance |C|
| 9 |

to the hyperplane 𝑤%𝑥 + 𝑏 = 0

Proof:
• pick any 𝑥> the hyperplane
• Project 𝑥> to the unit direction 9

| 9 |
to get the distance

• 9
9

%
𝑥> =

EC
| 9 |

since 𝑤%𝑥> + 𝑏 = 0



Margin: with bias

• Lemma 2: 𝑥 has distance |@A,F B |
| 9 |

to the hyperplane 𝑓9,C 𝑥 =
𝑤%𝑥 + 𝑏 = 0

Proof:
• Let 𝑥 = 𝑥G + 𝑟

9
| 9 |

, then |𝑟| is the distance

• Multiply both sides by 𝑤% and add 𝑏
• Left hand side: 𝑤%𝑥 + 𝑏 = 𝑓9,C 𝑥

• Right hand side: 𝑤%𝑥G + 𝑟
9I9
| 9 |

+ 𝑏 = 0 + 𝑟| 𝑤 |



𝑦 𝑥 = 𝑤%𝑥 + 𝑤J

The notation here is:

Figure from Pattern Recognition 
and Machine Learning, Bishop



Support Vector Machine (SVM)



SVM: objective

• Margin over all training data points:

𝛾 = min
+

|𝑓9,C 𝑥+ |
| 𝑤 |

• Since only want correct 𝑓9,C, and recall 𝑦+ ∈ {+1,−1}, we have

𝛾 = min
+

𝑦+𝑓9,C 𝑥+
| 𝑤 |

• If 𝑓9,C incorrect on some 𝑥+, the margin is negative



SVM: objective

• Maximize margin over all training data points:

max
9,C

𝛾 = max
9,C

min
+

𝑦+𝑓9,C 𝑥+
| 𝑤 | = max

9,C
min
+

𝑦+(𝑤%𝑥+ + 𝑏)
| 𝑤 |

• A bit complicated …



SVM: simplified objective

• Observation: when (𝑤, 𝑏) scaled by a factor 𝑐, the margin 
unchanged

𝑦+(𝑐𝑤%𝑥+ + 𝑐𝑏)
| 𝑐𝑤 | =

𝑦+(𝑤%𝑥+ + 𝑏)
| 𝑤 |

• Let’s consider a fixed scale such that

𝑦+∗ 𝑤%𝑥+∗ + 𝑏 = 1
where 𝑥+∗ is the point closest to the hyperplane



SVM: simplified objective

• Let’s consider a fixed scale such that

𝑦+∗ 𝑤%𝑥+∗ + 𝑏 = 1
where 𝑥+∗ is the point closet to the hyperplane

• Now we have for all data
𝑦+ 𝑤%𝑥+ + 𝑏 ≥ 1

and at least for one 𝑖 the equality holds
• Then the margin is >

| 9 |



SVM: simplified objective

• Optimization simplified to

min
9,C

1
2

𝑤
<

𝑦+ 𝑤%𝑥+ + 𝑏 ≥ 1, ∀𝑖

• How to find the optimum V𝑤∗?
• Solved by Lagrange multiplier method



Lagrange multiplier



Lagrangian

• Consider optimization problem:
min
9

𝑓(𝑤)

ℎ+ 𝑤 = 0, ∀1 ≤ 𝑖 ≤ 𝑙

• Lagrangian:
ℒ 𝑤,𝜷 = 𝑓 𝑤 +[

+

𝛽+ℎ+(𝑤)

where 𝛽+ ’s are called Lagrange multipliers



Lagrangian

• Consider optimization problem:
min
9

𝑓(𝑤)

ℎ+ 𝑤 = 0, ∀1 ≤ 𝑖 ≤ 𝑙

• Solved by setting derivatives of Lagrangian to 0
𝜕ℒ
𝜕𝑤+

= 0;
𝜕ℒ
𝜕𝛽+

= 0



Generalized Lagrangian

• Consider optimization problem:
min
9

𝑓(𝑤)

𝑔+ 𝑤 ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

ℎa 𝑤 = 0, ∀1 ≤ 𝑗 ≤ 𝑙
• Generalized Lagrangian:

ℒ 𝑤,𝜶, 𝜷 = 𝑓 𝑤 +[
+

𝛼+𝑔+(𝑤) +[
a

𝛽aℎa(𝑤)

where 𝛼+, 𝛽a ’s are called Lagrange multipliers



Generalized Lagrangian

• Consider the quantity:

𝜃f 𝑤 ≔ max
𝜶,𝜷:hijJ

ℒ 𝑤, 𝜶, 𝜷

• Why?

𝜃f 𝑤 = k𝑓 𝑤 , if 𝑤 satisfies all the constraints
+∞, if 𝑤 does not satisfy the constraints

• So minimizing 𝑓 𝑤 is the same as minimizing 𝜃f 𝑤
min
9
𝑓 𝑤 = min

9
𝜃f 𝑤 = min

9
max

𝜶,𝜷:hijJ
ℒ 𝑤, 𝜶, 𝜷



Lagrange duality

• The primal problem
𝑝∗ ≔ min

9
𝑓 𝑤 = min

9
max

𝜶,𝜷:hijJ
ℒ 𝑤, 𝜶, 𝜷

• The dual problem
𝑑∗ ≔ max

𝜶,𝜷:hijJ
min
9
ℒ 𝑤,𝜶, 𝜷

• Always true:
𝑑∗ ≤ 𝑝∗



Lagrange duality

• The primal problem
𝑝∗ ≔ min

9
𝑓 𝑤 = min

9
max

𝜶,𝜷:hijJ
ℒ 𝑤, 𝜶, 𝜷

• The dual problem
𝑑∗ ≔ max

𝜶,𝜷:hijJ
min
9
ℒ 𝑤,𝜶, 𝜷

• Interesting case: when do we have 
𝑑∗ = 𝑝∗?



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗
such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕ℒ
𝜕𝑤+

= 0, 𝛼+𝑔+ 𝑤 = 0

𝑔+ 𝑤 ≤ 0, ℎa 𝑤 = 0, 𝛼+ ≥ 0



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗
such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕ℒ
𝜕𝑤+

= 0, 𝛼+𝑔+ 𝑤 = 0

𝑔+ 𝑤 ≤ 0, ℎa 𝑤 = 0, 𝛼+ ≥ 0

dual 
complementarity



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗
such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

• Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) 
conditions:

𝜕ℒ
𝜕𝑤+

= 0, 𝛼+𝑔+ 𝑤 = 0

𝑔+ 𝑤 ≤ 0, ℎa 𝑤 = 0, 𝛼+ ≥ 0

dual constraintsprimal constraints



Lagrange duality

• What are the proper conditions? 
• A set of conditions (Slater conditions):

• 𝑓, 𝑔+ convex, ℎa affine, and exists 𝑤 satisfying all 𝑔+ 𝑤 < 0

• There exist other sets of conditions
• Check textbooks, e.g.,  Convex Optimization by Boyd and 

Vandenberghe



SVM: optimization



SVM: optimization

• Optimization (Quadratic Programming):

min
9,C

1
2 𝑤

<

𝑦+ 𝑤%𝑥+ + 𝑏 ≥ 1, ∀𝑖

• Generalized Lagrangian:

ℒ 𝑤, 𝑏, 𝜶 =
1
2

𝑤
<

−[
+

𝛼+[𝑦+ 𝑤%𝑥+ + 𝑏 − 1]

where 𝜶 is the Lagrange multiplier



SVM: optimization

• KKT conditions:
rℒ
r9

= 0,à 𝑤 = ∑+ 𝛼+𝑦+𝑥+ (1)
rℒ
rC
= 0,à 0 = ∑+ 𝛼+𝑦+ (2)

• Plug into ℒ:
ℒ 𝑤, 𝑏, 𝜶 = ∑+ 𝛼+ −

>
<
∑+a 𝛼+𝛼a𝑦+𝑦a𝑥+%𝑥a (3)

combined with 0 = ∑+ 𝛼+𝑦+ , 𝛼+ ≥ 0



SVM: optimization

• Reduces to dual problem:
ℒ 𝑤, 𝑏, 𝜶 =[

+

𝛼+ −
1
2
[
+a

𝛼+𝛼a𝑦+𝑦a𝑥+%𝑥a

[
+

𝛼+𝑦+ = 0, 𝛼+ ≥ 0

• Since 𝑤 = ∑+ 𝛼+𝑦+𝑥+, we have 𝑤%𝑥 + 𝑏 = ∑+ 𝛼+𝑦+𝑥+%𝑥 + 𝑏

Only depend on inner 
products



Support Vectors

• those instances with αi > 0
are called support vectors 
• they lie on the margin 

boundary
• solution NOT changed if 

delete the instances with αi = 
0 support 

vectors

• final solution is a sparse linear combination of the training 
instances



Learning theory justification

• Vapnik showed a connection between the margin and VC 
dimension

𝑉𝐶 ≤
4𝑅<

𝑚𝑎𝑟𝑔𝑖𝑛z(ℎ)
• thus to minimize the VC dimension (and to improve the error 

bound) è maximize the margin

error on true
distribution

training set
error VC: VC-dimension

of hypothesis class

𝑒𝑟𝑟𝑜𝑟 ℎ ≤ 𝑒𝑟𝑟𝑜𝑟z ℎ +
𝑉𝐶 log2𝑚𝑉𝐶 + 1 + log4𝛿

𝑚

constant dependent on training data



Goals for Part 2

you should understand the following concepts
• soft margin SVM
• support vector regression
• the kernel trick
• polynomial kernel
• Gaussian/RBF kernel
• valid kernels and Mercer’s theorem
• kernels and neural networks
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Variants: soft-margin and SVR



Hard-margin SVM

• Optimization (Quadratic Programming):

min
9,C

1
2 𝑤

<

𝑦+ 𝑤%𝑥+ + 𝑏 ≥ 1, ∀𝑖



Soft-margin SVM [Cortes & Vapnik, Machine Learning 1995]

• if the training instances are not linearly separable, the previous 
formulation will fail

• we can adjust our approach by using slack variables (denoted 
by 𝜁+) to tolerate errors

min
9,C,�i

1
2

𝑤
<

+ 𝐶[
+

𝜁+

𝑦+ 𝑤%𝑥+ + 𝑏 ≥ 1 − 𝜁+, 𝜁+ ≥ 0, ∀𝑖
• 𝐶 determines the relative importance of maximizing margin vs. 

minimizing slack



The effect of 𝐶 in soft-margin SVM

Figure from Ben-Hur & Weston, 
Methods in Molecular Biology 2010



Hinge loss

• when we covered neural nets, we talked about minimizing 
squared loss and cross-entropy loss

• SVMs minimize hinge loss

loss (error) 
when  𝑦 = 1

model output ℎ 𝒙

squared loss

0/1 loss

hinge loss



Support Vector Regression 

• the SVM idea can also be 
applied in regression tasks

• an 𝜖-insensitive error 
function specifies that a 
training instance is well 
explained if the model’s 
prediction is within 𝜖 of 𝑦+

(𝑤�𝑥 + 𝑏) − 𝑦 = 𝜖

𝑦 − (𝑤�𝑥 + 𝑏) = 𝜖



Support Vector Regression

• Regression using slack variables (denoted by 𝜁+, 𝜉+) to tolerate 
errors

min
9,C,�i,�i

1
2 𝑤

<

+ 𝐶[
+

𝜁+ + 𝜉+

𝑤%𝑥+ + 𝑏 − 𝑦+ ≤ 𝜖 + 𝜁+,
𝑦+ − 𝑤%𝑥+ + 𝑏 ≤ 𝜖 + 𝜉+,

𝜁+, 𝜉+ ≥ 0.

slack variables allow predictions
for some training instances to be
off by more than 𝜖



Kernel methods



Features

Color Histogram

Red Green

Extract 
features

𝑥 𝜙 𝑥



Features

Proper feature mapping can make non-linear to linear!



Recall: SVM dual form

• Reduces to dual problem:
ℒ 𝑤, 𝑏, 𝜶 =[

+

𝛼+ −
1
2
[
+a

𝛼+𝛼a𝑦+𝑦a𝑥+%𝑥a

[
+

𝛼+𝑦+ = 0, 𝛼+ ≥ 0

• Since 𝑤 = ∑+ 𝛼+𝑦+𝑥+, we have 𝑤%𝑥 + 𝑏 = ∑+ 𝛼+𝑦+𝑥+%𝑥 + 𝑏

Only depend on inner 
products



Features

• Using SVM on the feature space {𝜙 𝑥+ }: only need 𝜙 𝑥+ %𝜙(𝑥a)

• Conclusion: no need to design 𝜙 ⋅ , only need to design 

𝑘 𝑥+, 𝑥a = 𝜙 𝑥+ %𝜙(𝑥a)



Polynomial kernels

• Fix degree 𝑑 and constant 𝑐:
𝑘 𝑥, 𝑥′ = 𝑥%𝑥′ + 𝑐 �

• What are 𝜙(𝑥)?
• Expand the expression to get 𝜙(𝑥)



Polynomial kernels

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar



SVMs with polynomial kernels

Figure from Ben-Hur & Weston, 
Methods in Molecular Biology 2010
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Gaussian/RBF kernels 

• Fix bandwidth 𝜎:
𝑘 𝑥, 𝑥′ = exp(− 𝑥 − 𝑥� </2𝜎<)

• Also called radial basis function (RBF) kernels

• What are 𝜙(𝑥)? Consider the un-normalized version
𝑘′ 𝑥, 𝑥′ = exp(𝑥%𝑥′/𝜎<)

• Power series expansion: 

𝑘′ 𝑥, 𝑥� = [
+

��
𝑥%𝑥� +

𝜎+𝑖!



The RBF kernel illustrated

Figures from openclassroom.stanford.edu (Andrew Ng)
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𝛾 = −10 𝛾 = −100 𝛾 = −1000



Mercer’s condition for kenerls

• Theorem: 𝑘 𝑥, 𝑥′ has expansion 

𝑘 𝑥, 𝑥′ =[
+

��

𝑎+𝜙+ 𝑥 𝜙+(𝑥�)

if and only if for any function 𝑐(𝑥),

∫ ∫ 𝑐 𝑥 𝑐 𝑥� 𝑘 𝑥, 𝑥� 𝑑𝑥𝑑𝑥� ≥ 0

(Omit some math conditions for 𝑘 and 𝑐)



Constructing new kernels

• Kernels are closed under positive scaling, sum, product, 
pointwise limit, and composition with a power series 
∑+�� 𝑎+𝑘+(𝑥, 𝑥�)

• Example: 𝑘> 𝑥, 𝑥′ , 𝑘< 𝑥, 𝑥′ are kernels, then also is

𝑘 𝑥, 𝑥� = 2𝑘> 𝑥, 𝑥′ + 3𝑘< 𝑥, 𝑥′

• Example: 𝑘> 𝑥, 𝑥′ is kernel, then also is

𝑘 𝑥, 𝑥� = exp(𝑘> 𝑥, 𝑥� )



Kernel algebra
• given a valid kernel, we can make new valid kernels using a variety of 

operators

φ(x) = φa (x),  φb (x)( )k(x,v) = ka (x,v)+ kb (x,v)

k(x,v) = γ  ka (x,v),  γ > 0 φ(x) = γ  φa (x)

k(x,v) = ka (x,v)kb (x,v) φl (x) = φai (x)φbj (x)

k(x,v) = xTAv,   A is p.s.d. φ(x) = LTx,  where A = LLT  

k(x,v) = f (x) f (v)ka (x,v) φ(x) = f (x)φa (x)

kernel composition mapping composition
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Kernels v.s. Neural networks



Features

Color Histogram

Red Green

Extract 
features

𝑥

𝑦 = 𝑤%𝜙 𝑥
build 
hypothesis



Features: part of the model

𝑦 = 𝑤%𝜙 𝑥
build 
hypothesis

Linear model

Nonlinear model



Polynomial kernels

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar



Polynomial kernel SVM as two layer neural network

𝑥>

𝑥<

𝑥><

𝑥<<

2𝑥>𝑥<

2𝑐𝑥>

2𝑐𝑥<

𝑐

𝑦 = sign(𝑤%𝜙(𝑥) + 𝑏)

First layer is fixed. If also learn first layer, it becomes two layer neural network 



Comments on SVMs

• we can find solutions that are globally optimal (maximize the margin)
• because the learning task is framed as a convex optimization 

problem
• no local minima, in contrast to multi-layer neural nets

• there are two formulations of the optimization: primal and dual
• dual represents classifier decision in terms of support vectors
• dual enables the use of kernel functions

• we can use a wide range of optimization methods to learn SVM
• standard quadratic programming solvers
• SMO [Platt, 1999]
• linear programming solvers for some formulations
• etc.
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• kernels provide a powerful way to
• allow nonlinear decision boundaries
• represent/compare complex objects such as strings and trees
• incorporate domain knowledge into the learning task

• using the kernel trick, we can implicitly use high-dimensional mappings 
without explicitly computing them

• one SVM can represent only a binary classification task; multi-class 
problems handled using multiple SVMs and some encoding

• empirically, SVMs have shown (close to) state-of-the art accuracy for  many 
tasks

• the kernel idea can be extended to other tasks (anomaly detection, 
regression, etc.)
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Comments on SVMs



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 

Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom 
Dietterich, and Pedro Domingos. 


