
Ensemble Methods
CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts
• ensemble
• bootstrap sample
• bagging
• boosting
• random forests
• error correcting output codes

2

What is an ensemble?

a set of learned models whose individual decisions are combined in some way
to make predictions for new instances

x

h1(x)

h2 (x)

h3(x)

h4 (x)

h5 (x)

h(x)

3

When can an ensemble be more accurate?
• when the errors made by the individual predictors are (somewhat)

uncorrelated, and the predictors’ error rates are better than guessing (<
0.5 for 2-class problem)

• consider an idealized case…

error rate of ensemble
is represented by
probability mass in this box =
0.026

Figure from Dietterich, AI Magazine, 19974

How can we get diverse classifiers?

• In practice, we can’t get classifiers whose errors are completely
uncorrelated, but we can encourage diversity in their errors by

• choosing a variety of learning algorithms
• choosing a variety of settings (e.g. # hidden units in neural

nets) for the learning algorithm
• choosing different subsamples of the training set (bagging)
• using different probability distributions over the training

instances (boosting, skewing)
• choosing different features and subsamples (random forests)

5

Bagging (Bootstrap Aggregation)
[Breiman, Machine Learning 1996]

learning:
given: learner L, training set D = {〈x1, y1〉… 〈xm, ym〉 }
for i← 1 to T do

D(i) ← m instances randomly drawn with replacement from D
hi ← model learned using L on D(i)

classification:
given: test instance x
predict y← plurality_vote(h1(x) … hT(x))

regression:
given: test instance xt
predict y← mean(h1(x) … hT(x))

6

Bagging

• each sampled training set is a bootstrap replicate
• contains m instances (the same as the original training set)
• on average it includes 63.2% of the original training set
• some instances appear multiple times

• can be used with any base learner

• works best with unstable learning methods: those for which small
changes in D result in relatively large changes in learned models,
i.e., those that tend to overfit training data

7

Empirical evaluation of bagging with C4.5

Fi
gu

re
 fr

om
 D

ie
tte

ric
h,

 A
I M

ag
az

in
e,

 1
99

7

Bagging reduced error of C4.5 on most data sets; wasn’t harmful on any

8

Boosting

• Boosting came out of the PAC learning community

• A weak PAC learning algorithm is one that cannot PAC learn for
arbitrary ε and δ, but it can for some: its hypotheses are at least
slightly better than random guessing

• Suppose we have a weak PAC learning algorithm L for a concept
class C. Can we use L as a subroutine to create a (strong) PAC
learner for C?

• Yes, by boosting! [Schapire, Machine Learning 1990]
• The original boosting algorithm was of theoretical interest, but

assumed an unbounded source of training instances

• A later boosting algorithm, AdaBoost, has had notable practical
success

9

AdaBoost
[Freund & Schapire, Journal of Computer and System Sciences, 1997]

given: learner L, # stages T, training set D = {〈x1, y1〉… 〈xm, ym〉 }

for all i : w1(i) ← 1/m // initialize instance weights
for t← 1 to T do

for all i : pt(i) ← wt(i) / (Σj wt(j)) // normalize weights
ht ← model learned using L on D and pt

εt← Σi pt(i)(1 - δ(ht(xi), yi)) // calculate weighted error
if εt > 0.5 then

T← t – 1
break

βt ← εt / (1 – εt) // lower error, smaller βt
for all i where ht(xi) = yi // downweight correct examples

wt+1(i) ← wt(i) βt

return:

10

å
=

÷÷
ø

ö
çç
è

æ
=

T

t
t

t
y yhh

1
)),((1logmaxarg)(xx d

b

Implementing weighted instances with AdaBoost

• AdaBoost calls the base learner L with probability distribution pt
specified by weights on the instances

• there are two ways to handle this
1. Adapt L to learn from weighted instances; straightforward for

decision trees and naïve Bayes, among others
2. Sample a large (>> m) unweighted set of instances

according to pt ; run L in the ordinary manner

11

Empirical evaluation of boosting with C4.5

Figure from Dietterich, AI Magazine, 1997

12

Bagging and boosting with C4.5

Fi
gu

re
 fr

om
 D

ie
tte

ric
h,

 A
I M

ag
az

in
e,

 1
99

7

13

Empirical study of bagging vs. boosting
[Opitz & Maclin, JAIR 1999]

• 23 data sets
• C4.5 and neural nets as base learners
• bagging almost always better than single

decision tree or neural net
• boosting can be much better than bagging
• however, boosting can sometimes reduce accuracy

(too much emphasis on outliers?)

14

Random forests
[Breiman, Machine Learning 2001]

given: candidate feature splits F, training set D = {〈x1, y1〉…〈xm, ym〉}
for i← 1 to T do

D(i) ← m instances randomly drawn with replacement from D
hi ← randomized decision tree learned with F, D(i)

randomized decision tree learning:
to select a split at a node

R ← randomly select (without replacement) f feature splits from F
(where 𝑓 ≈ |𝐹|)

choose the best feature split in R
do not prune trees

classification/regression:
as in bagging

15

Learning models for multi-class problems
• consider a learning task with k > 2 classes
• with some learning methods, we can learn one model to predict the k classes

• an alternative approach is to learn k models; each represents one class
vs. the rest

• but we could learn models to represent other encodings as well

16

Error correcting output codes
[Dietterich & Bakiri, JAIR 1995]

• ensemble method devised specifically for problems with many classes
• represent each class by a multi-bit code word
• learn a classifier to represent each bit function

17

Classification with ECOC

• to classify a test instance x using an ECOC ensemble with T classifiers
1. form a vector h(x) = 〈h1(x) … hT(x) 〉 where hi(x) is the prediction

of the model for the ith bit
2. find the codeword c with the smallest Hamming distance to h(x)
3. predict the class associated with c

recall, ⎣x⎦ is the largest
integer not greater than x

• if the minimum Hamming distance between any pair of codewords is d,
we can still get the right classification with single-bit errors

18

úû
ú

êë
ê -
2
1d

Error correcting code design
a good ECOC should satisfy two properties

1. row separation: each codeword should be well separated in
Hamming distance from every other codeword

2. column separation: each bit position should be uncorrelated
with the other bit positions

7 bits apart

6 bits apart
19

errors 3
2

17correct can code thisso 7 =úû
ú

êë
ê -

=d

ECOC evaluation with C4.5

Figure from Bakiri & Dietterich, JAIR, 1995

20

ECOC evaluation with neural nets

Figure from Bakiri & Dietterich, JAIR, 1995

21

Other Ensemble Methods

• Use different parameter settings with same algorithm
• Use different learning algorithms
• Instead of voting or weighted voting, learn the combining

function itself
• Called “Stacking”
• Higher risk of overfitting
• Ideally, train arbitrator function on different subset of data than used

for input models
• Naïve Bayes is weighted vote of stumps

22

Comments on ensembles

• They very often provide a boost in accuracy over base learner

• It’s a good idea to evaluate an ensemble approach for almost any
practical learning problem

• They increase runtime over base learner, but compute cycles are
usually much cheaper than training instances

• Some ensemble approaches (e.g. bagging, random forests) are
easily parallelized

• Prediction contests (e.g. Kaggle, Netflix Prize) usually won by
ensemble solutions

• Ensemble models are usually low on the comprehensibility scale,
although see work by

[Craven & Shavlik, NIPS 1996]
[Domingos, Intelligent Data Analysis 1998]
[Van Assche & Blockeel, ECML 2007]

23

THANK YOU
Some of the slides in these lectures have been adapted/borrowed
from materials developed by Yingyu Liang, Mark Craven, David

Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom
Dietterich, and Pedro Domingos.

