

Goals for the lecture

you should understand the following concepts

- active learning
- active SVM and uncertainty sampling
- disagreement based active learning
- other active learning techniques

Classic Fully Supervised Learning Paradigm Insufficient Nowadays

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.

Protein sequences

Billions of webpages

Images

Modern ML: New Learning Approaches

Modern applications: massive amounts of raw data.

Active learning: techniques that best utilize data, minimizing need for expert/human intervention.

Batch Active Learning

- Learner can choose specific examples to be labeled.
- Goal: use fewer labeled examples [pick informative examples to be labeled].

Selective Sampling Active Learning

- Selective sampling AL (Online AL): stream of unlabeled examples, when each arrives make a decision to ask for label or not.
 - Goal: use fewer labeled examples [pick informative examples to be labeled].

What Makes a Good Active Learning Algorithm?

- Guaranteed to output a relatively good classifier for most learning problems.
 - Doesn't make too many label requests.
 - Hopefully a lot less than passive learning and semi-supervised learning.
 - Need to choose the label requests carefully, to get informative labels.

Can adaptive querying really do better than passive/random sampling?

- YES! (sometimes)
- We often need far fewer labels for active learning than for passive.
- This is predicted by theory and has been observed in practice.

Can adaptive querying help? [CAL92, Dasgupta04]

• Threshold fns on the real line: $h_w(x) = 1(x, w)$, $C = \{h_w: w \ge R\}$

- Get N unlabeled examples
- How can we recover the correct labels with $\ll N$ queries?
- Do binary search! Just need O(log N) labels!

- Output a classifier consistent with the N inferred labels.
- $N = O(1/\epsilon)$ we are guaranteed to get a classifier of error $\leq \epsilon$.

Passive supervised: $\Omega(1/\epsilon)$ labels to find an ϵ -accurate threshold.

Active: only $O(\log 1/\epsilon)$ labels. Exponential improvement.

Uncertainty sampling in SVMs common and quite useful in practice. E.g., [Tong & Koller, ICML 2000; Jain, Vijayanarasimhan & Grauman, NIPS 2010; Schohon Cohn, ICML 2000]

Active SVM Algorithm

- At any time during the alg., we have a "current guess" \mathbf{w}_t of the separator: the max-margin separator of all labeled points so far.
- Request the label of the example closest to the current separator.

Active SVM seems to be quite useful in practice.

[Tong & Koller, ICML 2000; Jain, Vijayanarasimhan & Grauman, NIPS 2010]

Algorithm (batch version)

Input $S_u = \{x_1, ..., x_{m_u}\}$ drawn i.i.d from the underlying source D

Start: query for the labels of a few random x_i s.

For t = 1,,

- Find w_t the max-margin separator of all labeled points so far.
- Request the label of the example closest to the current separator: minimizing $|x_i \cdot w_t|$.

(highest uncertainty)

Active SVM seems to be quite useful in practice.

E.g., Jain, Vijayanarasimhan & Grauman, NIPS 2010

Newsgroups dataset (20.000 documents from 20 categories)

Active SVM seems to be quite useful in practice.

E.g., Jain, Vijayanarasimhan & Grauman, NIPS 2010

CIFAR-10 image dataset (60.000 images from 10 categories)

Active SVM/Uncertainty Sampling

- Works sometimes....
- However, we need to be very very very careful!!!
 - Myopic, greedy technique can suffer from sampling bias.
 - A bias created because of the querying strategy; as time goes on the sample is less and less representative of the true data source.

Active SVM/Uncertainty Sampling

- Works sometimes....
- However, we need to be very very careful!!!

Active SVM/Uncertainty Sampling

- Works sometimes....
- However, we need to be very very careful!!!
 - Myopic, greedy technique can suffer from sampling bias.
 - Bias created because of the querying strategy; as time goes on the sample is less and less representative of the true source.
 - Observed in practice too!!!!

 Main tension: want to choose informative points, but also want to guarantee that the classifier we output does well on true random examples from the underlying distribution.

Safe Active Learning Schemes

Disagreement Based Active Learning Hypothesis Space Search

[CAL92] [BBL06]

[Hanneke'07, DHM'07, Wang'09, Fridman'09, Kolt10, BHW'08, BHLZ'10, H'10, Ailon'12, ...]

Version Spaces

- X feature/instance space; distr. D over X; c^* target fnc
- Fix hypothesis space H.

Definition (Mitchell'82) Assume realizable case: $c^* \in H$.

Given a set of labeled examples $(x_1, y_1), ..., (x_{m_1}, y_{m_1}), y_i = c^*(x_i)$

Version space of H: part of H consistent with labels so far.

I.e., $h \in VS(H)$ iff $h(x_i) = c^*(x_i) \ \forall i \in \{1, ..., m_l\}$.

Version Spaces

- X feature/instance space; distr. D over X; c^* target fnc
- Fix hypothesis space H.

Definition (Mitchell'82) Assume realizable case: $c^* \in H$.

Given a set of labeled examples $(x_1, y_1), ..., (x_{m_1}, y_{m_1}), y_i = c^*(x_i)$

Version space of H: part of H consistent with labels so far.

Version Spaces. Region of Disagreement

Definition (CAL'92)

Version space: part of H consistent with labels so far.

Region of disagreement = part of data space about which there is still some uncertainty (i.e. disagreement within version space)

 $x \in X, x \in DIS(VS(H))$ iff $\exists h_1, h_2 \in VS(H), h_1(x) \neq h_2(x)$

Disagreement Based Active Learning [CAL92]

Algorithm:

Pick a few points at random from the current region of uncertainty and query their labels.

Stop when region of uncertainty is small.

Note: it is active since we do not waste labels by querying in regions of space we are certain about the labels.

Disagreement Based Active Learning [CAL92]

Algorithm:

Query for the labels of a few random x_i s.

Let H_1 be the current version space.

For t = 1,,

Pick a few points at random from the current region of disagreement $DIS(H_t)$ and query their labels.

Let H_{t+1} be the new version space.

Region of uncertainty [CAL92]

- Current version space: part of C consistent with labels so far.
- "Region of uncertainty" = part of data space about which there is still some uncertainty (i.e. disagreement within version space)

Region of uncertainty [CAL92]

- Current version space: part of C consistent with labels so far.
- "Region of uncertainty" = part of data space about which there is still some uncertainty (i.e. disagreement within version space)

Other Interesting AL Techniques used in Practice

Interesting open question to analyze under what conditions they are successful.

Density-Based Sampling

Uncertainty Sampling

Maximal Diversity Sampling

Ensemble-Based Possibilities

What You Should Know

- Active learning could be really helpful, could provide exponential improvements in label complexity (both theoretically and practically)!
- Common heuristics (e.g., those based on uncertainty sampling). Need to be very careful due to sampling bias.

- Safe Disagreement Based Active Learning Schemes.
 - Understand how they operate precisely in the realizable case (noise free scenarios).

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yingyu Liang, Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.

