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Abstract

This paper describes the discipline of distance metric learning, a branch of machine learn-
ing that aims to learn distances from the data. Distance metric learning can be useful to
improve similarity learning algorithms, and also has applications in dimensionality reduc-
tion. We describe the distance metric learning problem and analyze its main mathematical
foundations. We discuss some of the most popular distance metric learning techniques
used in classification, showing their goals and the required information to understand and
use them. Furthermore, we present a Python package that collects a set of 17 distance
metric learning techniques explained in this paper, with some experiments to evaluate the
performance of the different algorithms. Finally, we discuss several possibilities of future
work in this topic.

Keywords: Distance Metric Learning, Classification, Mahalanobis Distance, Dimension-
ality, Similarity

1. Introduction

The use of distances in machine learning has been present since its inception. Distances
provide a similarity measure between the data, so that close data will be considered similar,
while remote data will be considered dissimilar. One of the most popular examples of this
similarity learning is the well-known nearest neighbors rule for classification, where a new
sample is labeled with the majority class within its nearest neighbors in the training set.
This classifier was presented by Cover and Hart (1967), even though this idea had already
been mentioned in earlier publications (see Sebestyen, 1962; Nilsson, 1965).

Algorithms in the style of the nearest neighbors classifier are among the main motiva-
tors of distance metric learning. These kind of algorithms have usually used a standard
distance, like the euclidean distance, to measure the data similarity. However, a standard
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distance may ignore some important properties available in our dataset, so that the learning
results could be non optimal. The search for a distance that brings similar data as close as
possible, while moving non similar data away, can significantly increase the quality of these
algorithms.

Distance metric learning has applications beyond the improvement of such algorithms.
We will see, for example, that learning distances is closely related to learning linear map-
pings, which in turn is closely related with dimensionality reduction (see also Cunningham
and Ghahramani, 2015).

Although techniques such as principal component analysis or linear discriminant anal-
ysis, which are considered distance metric learning techniques, have been popular in the
statistical field since the middle of the 20th century, it is not until the beginning of the 21st
century that distance metric learning is properly spoken of, and perhaps the algorithm from
Xing et al. (2003) is responsible for drawing attention to this concept for the first time.

During the first decade of the 21st century some of the most well-known distance metric
learning algorithms were developed, and are still popular today. The most relevant of
these algorithms will be studied throughout this tutorial. Over recent years distance metric
learning remains active, both in the search for new proposals for innovative distance metric
learning algorithms, and in the refinement of techniques already employed over the past
decade. Some of these techniques will also be shown.

In this paper we make a theoretical study of supervised distance metric learning, in
which we show the mathematical foundations of distance metric learning and its algorithms.
Furthermore, we analyze several distance metric learning algorithms for classification, from
the problems and the objective functions they try to optimize, to the methods that lead to
the solution of these problems.

Regarding the theoretical background of distance metric learning, we have studied three
mathematical fields closely related with this topic. The first one is convex analysis (Rock-
afellar, 2015; Boyd and Vandenberghe, 2004). Convex analysis is present in many distance
metric learning algorithms, since they try to optimize convex functions over convex sets.
Some interesting properties about convex sets, as well as how to deal with constrained
convex problems, will be shown in this study. We will also see how the use of matrices is
a fundamental part of modeling our problem. Matrix analysis (Horn and Johnson, 1990)
will therefore be the second field. The third field is information theory (Cover and Thomas,
2006), which is also used in some of the algorithms we will show. In addition, the theoretical
approach on machine learning that we will follow is the one provided by Shalev-Shwartz
and Ben-David (2014).

As explained before, our work focuses on supervised distance metric learning techniques.
A large amount of algorithms have been proposed over the years. These algorithms were
developed with different purposes and based on different ideas, so that we can classify them
in different groups. In this way, we can find algorithms whose main goal is dimensionality
reduction (Fisher, 1936; Wang and Zhang, 2007), algorithms specifically oriented to improve
distance based classifiers, such as the nearest neighbors classifier (Weinberger and Saul,
2009; Goldberger et al., 2005), or the nearest centroid classification (Mensink et al., 2012),
and a few techniques are also based on information theory (Davis et al., 2007; Nguyen
et al., 2017; Globerson and Roweis, 2006). Some of these algorithms also allow kernel
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versions (Torresani and Lee, 2007; Mika et al., 1999; Wang and Zhang, 2007; Nguyen et al.,
2017), that allow for the extension of distance metric learning to highly dimensional spaces.

We also present a Python package, called pyDML1, that collects all the algorithms shown
in this tutorial. This package, developed in the Python language, integrates the algorithms
analyzed throughout the work, trying to provide extensive software on this subject, which is
also compatible with the machine learning tools provided by Scikit-Learn (Pedregosa et al.,
2011).

To complete this study, we carry out several experiments involving all the developed
algorithms in pyDML executed over 34 datasets. For that, we define different settings to
explore their performance and capabilities when considering maximum dimension, centroid-
based methods, different kernels and dimensionality reduction. Bayesian statistical tests are
used to assess the significant differences among algorithms (Benavoli et al., 2017).

Several surveys on distance metric learning have been proposed. Among the well-known
surveys we can find the work of Yang and Jin (2006), Kulis et al. (2013), Bellet et al. (2013)
and Moutafis et al. (2017). In our paper, we want to differ from these previous publications
by focusing on a deeper analysis of the main concepts of distance metric learning, trying
to get to its basic ideas, as well as providing an extensive software framework for metric
learning purposes. Besides, we will discuss some opportunities for future work in this topic.

Our paper is organized as follows. Section 2 presents the mathematical foundations
of distance metric learning, structured in the three blocks discussed previously. Section 3
introduces the distance metric problem, explains the family of distances we will work with
and shows several examples and applications. Section 4 discusses all the distance metric
learning algorithms chosen for this tutorial. Section 5 presents the software developed to-
gether with this paper. In this section we compare our package with the existing software
and provide basic instructions for installation and use, together with links to the full doc-
umentation. Section 6 describes the experiments done to evaluate the performance of the
algorithms and shows the obtained results. Finally, Sections 7 and 8 conclude the paper by
summarizing the work done and indicating possible future avenues of research in this area,
respectively.

2. Mathematical Background

In this section we will study three mathematical blocks that make up the foundations of
distance metric learning: convex analysis, matrix analysis and information theory.

2.1 Convex Analysis

Convex analysis is a fundamental field of study for many optimization problems. This
field studies the convex sets, functions and problems. Convex functions have very useful
properties in optimization tasks, and allow tools to be built to solve numerous types of
convex optimization problems.

We will highlight some results of convex analysis in our work. First, we will show some
important geometric properties of convex sets, such as the convex projection theorem, and
then we will analyze some optimization methods that will be used later.

1. https://github.com/jlsuarezdiaz/pyDML.
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We start with the geometry of convex sets. We will work in the euclidean d-dimensional
space, Rd, where we note the dot product as 〈·, ·〉.

2.1.1 Convex Set Results

Recall that convex sets are those for which any segment between two points in the set
remains within the set, that is, a set K ⊂ Rd is convex iff [x, y] = {(1 − λ)x + λy : λ ∈
[0, 1]} ⊂ K, for every x, y ∈ K. An important result from convex sets states that, at every
point on the border of a closed set, we can setup a hyperplane so that the convex set and
the hyperplane intersect only at the boundary of the set, and the whole set lies on one side
of the hyperplane. Furthermore, this property characterizes the closed convex sets with non
empty interiors. This result is known as the supporting hyperplane theorem and we discuss
it below.

Definition 1 Let T : Rd → R be a linear map, α ∈ R and P = {x ∈ Rd : T (x) = α} be
an hyperplane. Associated with P , we define P+ = {x ∈ Rd : T (x) ≥ α} and P− = {x ∈
Rd : T (x) ≤ α}.

We say that P is a supporting hyperplane for the set K ⊂ Rd if P ∩K 6= ∅, and either
K ⊂ P+ or K ⊂ P−. We refer to supporting half-space as the half-space that contains K,
between P+ and P−.

Theorem 2 (Supporting hyperplane theorem)

1. If K ⊂ Rd is a closed convex set, then for each x0 ∈ FrK there is a supporting
hyperplane P for K so that x0 ∈ P .

2. Every proper closed convex set in Rd is the intersection of all its supporting half-spaces.

3. Let K ⊂ Rd be a closed set with non empty interior. Then, K is convex if and only if
for every x ∈ FrK there is a supporting hyperplane P for K with x ∈ P .

Proof of this result can be found in Dacorogna (2007, chap. 2, theorem 2.7). We will use
this theorem in the following results. The following property is fundamental to be able to
make sense of the optimization tools shown in this paper. We will see that, given a closed
convex set and a point in Rd, we can find a nearest point to the given point in the convex
set, and it is unique, that is, there is a projection for the given point onto the convex set.
In other words, projections onto convex sets are well defined. We prove this result below.
We will see that projections will help us to deal with constrained convex problems.

Theorem 3 (Convex projection) Let K ⊂ Rd be a non empty closed convex set. Then,
for every x ∈ Rd there is a single point x0 ∈ K with d(x,K) = d(x, x0), where we have
defined the distance to the set K by

d(x,K) = inf{d(x, y) : y ∈ K}.

The point x0 is called the projection of x onto K and it is usually denoted by PK(x).
The function PK : Rd → K given by the mapping x 7→ PK(x) is therefore well defined
and it is called the projection onto K. In addition, for each x ∈ Rd \ K, the half-space
{y ∈ Rd : 〈x− PK(x), y − PK(x)〉 ≤ 0} is a supporting half-space for K in PK(x).
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Proof First, we will prove the existence of a point in K in which the distance to K is
achieved. In fact, this is true for every closed and not necessarily convex set. Let x ∈ Rd.
As K is closed, we can choose R > 0 so that K ∩B(x,R) is a compact and non empty set.
We consider the distance to x in this set, that is, we define the map dx : K ∩B(x,R)→ R+

0

by dx(y) = d(x, y) = ‖x − y‖. dx is continuous and it is defined over a compact set, so it
attains a minimum at a point x0 ∈ K ∩B(x,R).

If we now take y ∈ K ∩ B(x,R), we get d(x, y) = dx(y) ≥ dx(x0) = d(x, x0). On the
other hand, if we take y ∈ K \ B(x,R), we get d(x, y) > r ≥ d(x, x0). We have obtained
that d(x, y) ≥ d(x, x0) for every y ∈ K, and therefore d(x,K) ≥ d(x, x0). The remaining
inequality is clear, since x0 ∈ K, that is, x0 is the point we were looking for.

We will see now the uniqueness of the point found. Suppose that x1, x2 ∈ K verify that
d(x, x1) = d(x,K) = d(x, x2). We define x0 as the half point in the segment [x1, x2]. We
have that x0 ∈ K, since K is convex. Let us note that

〈x1 − x2, x− x0〉 = 〈x1 − x2, x−
1

2
(x1 + x2)〉 =

1

2
〈x1 − x2, 2x− x1 − x2〉.

If we substitute x1 − x2 = (x− x2)− (x− x1) and 2x− x1 − x2 = (x− x2) + (x− x1), we
obtain

〈x1 − x2, x− x0〉 =
1

2
〈(x− x2)− (x− x1), (x− x2) + (x− x!)〉

=
1

2
(‖x− x2‖2 − ‖x− x1‖2)

=
1

2
(d(x,K)2 − d(x,K)2) = 0.

Therefore, the vectors x1 − x2 and x− x0 are orthogonal, and consequently so are x− x0 y
x0 − x2 = (x1 − x2)/2. Applying Pythagorean theorem we have

d(x,K)2 = ‖x− x2‖2 = ‖x− x0‖2 + ‖x0 − x2‖2 ≥ ‖x− x0‖2 ≥ d(x,K)2,

that is, the equality holds in the previous inequality. In particular, we obtain that ‖x0 −
x2‖2 = 0, and then x0 = x2. Since x0 was the half point of [x1, x2] we conclude that x1 = x2,
proving the uniqueness.

Finally we will prove the last assertion in the theorem. Let x ∈ Rd \ K and suppose
that there exists y ∈ K with 〈x− PK(x), y − PK(x)〉 > 0. Since K is convex, the segment
[y, PK(x)] is contained in K, and therefore we have yt = PK(x) + t(y − PK(x)) ∈ K, for
every t ∈ [0, 1]. We define the map f : [0, 1]→ R by

f(t) = ‖yt − x‖2 = ‖PK(x)− x+ t(y − PK(x))‖2

= ‖PK(x)− x‖2 + 2t〈PK(x)− x, y − PK(x)〉+ t2‖y − PK(x)‖2.

f is a polynomial in t, so it is differentiable, and

f ′(0) = 2〈PK(x)− x, y − PK(x)〉 = −2〈x− PK(x), y − PK(x)〉 < 0.

Last expression implies that f is strictly decreasing in a neighborhood of 0, that is, there
exists ε > 0 so that ‖yt − x‖2 < ‖y0 − x‖2 = ‖PK(x)− x‖2, for 0 < t < ε, which results in
a contradiction, since PK(x) minimizes the distance to x in K and the points yt lie on K.
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2.1.2 Optimization Methods

In the following paragraphs we will discuss some of the optimization methods that we will
use in distance metric learning algorithms. These algorithms will generally try to optimize
(we will focus on minimizing without loss of generality) differentiable functions without
constraints, or convex functions subject to convex constraints. For the first case, it is well
known that the gradient of a differentiable function has the direction of the maximum slope
in the function graph, thus by advancing small quantities in the negative gradient direction
we manage to reduce the value of our objective function. This iterative method is usually
called the gradient descent method. The adaptation rule for this method, for a differentiable
function f : Rd → R, is given by xt+1 = xt − η∇f(xt), t ∈ N ∪ {0}, where η is the quantity
we advance in the negative gradient direction, and it is called the learning rate. This value
can be either constant or adapted according to the evaluations of the objective function.
For the first option, the choice of a value of η that is too big or too small can lead to poor
results. The second option needs to evaluate the objective function at each iteration, which
can be computationally expensive.

Foundations of gradient descent are based on the following ideas. Let us consider an
objective function f : Rd → R, x ∈ Rd and v ∈ Rd \ {0} an arbitrary direction. We also
consider the function g : R → R given by g(η) = f(x + ηv/‖v‖). The rate of change or
directional derivative of f at x in the direction of v is given by g′(0) = 〈∇f(x), v〉/‖v‖.
Applying Cauchy-Schwarz inequality, we have

−‖∇f(x)‖ ≤ 1

‖v‖
〈∇f(x), v〉 ≤ ‖∇f(x)‖,

and equality in the left inequality holds when v = −∇f(x), thus obtaining the maximum
descent rate. In the same way, the maximum ascent rate is achieved when v = ∇f(x).

If gradient at x is non zero and we consider the first order Taylor approximation with
the points x and x− η∇f(x), we have that

f(x− η∇f(x)) = f(x)− η‖∇f(x)‖2 + o(η),

with limη→0 |o(η)|/η = 0, then there is ε > 0 so that if 0 < δ < ε, we have

o(δ)

δ
< ‖∇f(x)‖,

and therefore

f(x− δ∇f(x))− f(x) = δ

(
−‖∇f(x)‖2 +

o(δ)

δ

)
< δ(−‖∇f(x)‖2 + ‖∇f(x)‖2) = 0,

thus f(x − δ∇f(x)) < f(x) for 0 < δ < ε, so we are guaranteed that for an accurate
learning rate the gradient method performs a descent at each iteration. Let us observe that
the gradient direction is not the only valid descent direction, but the above calculations
are still true for any direction v ∈ Rd with 〈∇f(x), v〉 < 0. The choice of different descent
directions, even if they are not the maximum slope direction, may provide better results in
certain situations.
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Now we will discuss the constrained convex optimization problems. When we work with
constrained problems, gradient descent method cannot be applied directly, as the gradient
descent adaptation rule, xt+1 = xt−η∇f(xt), does not guarantee xt+1 to be a feasible point,
that is, a point that fulfills all the constraints. When the optimization problem is convex,
the set determined by the constraints is closed and convex, so we can take projections onto
this feasible set. The projected gradient method tries to fix the gradient descent problem by
adding a projection onto the feasible set in the gradient descent adaptation rule, that is, if C
is the feasible set, and PC is the projection onto this set, the projected gradient adaptation
rule becomes xt+1 = PC(xt− η∇f(xt)). To confirm that this method is successful, we have
to show that the direction v = PC(x−η∇f(x))−x is a descent direction, which is attained,
thanks to the reasons given above, if 〈∇f(x), v〉 < 0.

We name x1 = x − η∇f(x). Then, v = PC(x1) − x. Note that 〈∇f(x), v〉 < 0 ⇐⇒
〈x1 − x, PC(x1) − x〉 = −η〈∇f(x), v〉 > 0. If gradient is not null and x1 ∈ C, we get
〈x1−x, PC(x1)−x〉 = 〈x1−x, x1−x〉 = ‖x1−x‖2 > 0. If x1 /∈ C, then the convex projection
theorem (Theorem 3) ensures that the half-space H = {y ∈ Rd : 〈x1−PC(x1), y−PC(x1)〉 ≤
0} contains C. In particular,

0 ≥ 〈x1 − PC(x1), x− PC(x1)〉 = 〈x1 − x, x− PC(x1)〉+ ‖x− PC(x1)‖2.

Consequently, 〈x1 − x, PC(x1) − x〉 ≥ ‖x − PC(x1)‖2 ≥ 0. In addition, equality holds if
and only if x = PC(x1), in which case the iterative algorithm will have converged (observe
that this happens when x ∈ FrC and the gradient descent direction points out of C and
orthogonally to the supporting hyperplane). Therefore, as long as the projected gradient
iterations produce changes in the obtained points, an appropiate learning rate will ensure
the descent in the objective function. Figure 1 visually compares the gradient descent
method and the projected gradient method.

Another problem we can find when trying to optimize constrained convex problems is
that we may have multiple constraints, but we only know the projection onto each single
restriction, without knowing the projection onto the intersection, which makes up the feasi-
ble set. In these cases, a popular method to find a point in the intersection is the so-called
iterated projections method, which consists of taking successive projections onto each con-
straint set, and repeating this procedure cyclically. We will analyze the simplest case, that
is, let us suppose that we have a feasible set determined by two convex constraints. The
following theorem states that, if the intersection of the sets determined by each constraint is
not empty, then the sequence of iterated projections converge to a point in the intersection.

Theorem 4 (Convergence of the iterated projections method) Let C,D ⊂ Rd be
closed convex sets, and let PC , PD : Rd → Rd be the projections onto C and D, respectively.
Suppose that x0 ∈ C and we build the sequences {xn} and {yn} given by yn = PD(xn) and
xn+1 = PC(yn), for each n ∈ N ∪ {0}.

Then, if C ∩D 6= ∅, both sequences converge to a point x∗ ∈ C ∩D.

Proof of this result is provided by Boyd and Dattorro (2003). It is also interesting to
remark that, when the sets do not intersect, both sequences converge, as long as there are
points where the distance between both sets is attained (these points will be the limits
for each sequence). The extension to the general case can be made following a similar
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Figure 1: Orange shaded areas represent contour lines of the function f(x, y) = 2(x+ y)2 + 2y2 for
natural values between 0 and 10. The red path shows the behaviour of the unconstrained
gradient descent method applied to f . The blue path shows the behaviour of the projected
gradient descent, with the blue ellipse as the feasible set. In both cases we observe that
we are obtaining descent directions.
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argument, and it is discussed by Bregman (1967). That is why the general case is also
called the Bregman projections method. Figure 2 shows a graphical example of the iterated
projections method.

Figure 2: The iterated projections method. The second image shows how the algorithm works if
the sets do not intersect.

To conclude this section, we need to make a last remark. Recall that a convex and differ-
entiable function f : Ω→ R defined on a convex open set verifies that f(x) ≥ 〈∇f(x0), x−
x0〉, for every x, x0 ∈ Ω. Let x0 ∈ Ω be fix. When we work with convex but non differ-
entiable functions, there are still vectors v ∈ Rd for which f(x) ≥ f(x0) + 〈v, x − x0〉, for
every x ∈ Ω. This is a consequence of the supporting hyperplane theorem applied to the
epigraph of f (recall that f is convex iff its epigraph is too). In this case we say that v is
a subgradient of f at x0 and we note it as ∂f(x0), or ∂f(x0)/∂x, if we need to specify the
variable.

Subgradients and gradients have similar behaviours, although we cannot always guaran-
tee that subgradients are descent directions. Subgradient methods work in a similar way to
gradient methods, replacing the gradient in the adaptation rule by a subgradient. In sub-
gradient methods it is useful to keep track of the best value obtained, as some subgradients
may not be descent directions. In the situations we will handle, subgradient computations
are easy: if f is differentiable at x0, then ∇f(x0) is a subgradient (in fact, this is the only
subgradient at x0); if f is a maximum of convex differentiable functions, then a subgradient
at x0 is the gradient of any of the differentiable functions that attains the maximum at x0.

2.2 Matrix Analysis

In distance metric learning, matrices will play a key role, as they will be the structure
over which distances will be defined and over which the optimization methods studied in
the previous section will be applied. Within the set of all matrices, positive semidefinite
matrices will be of even greater importance, so, in order to better understand the learning
problems we will be dealing with, it will be necessary to delve into some of their numerous
properties.

9
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This section examines in depth the study of matrices, on a basis of the best-known
results of diagonalization in linear algebra. From this basis, we will show how to give the
set of matrices a Hilbert space structure, in order to be able to apply the convexity results
and optimization methods from the previous chapter. In particular, we will be interested
in how to obtain projections onto the set of positive semidefinite matrices. Also related to
positive semidefinite matrices, we will present several results regarding decomposition that
we will need in future sections. Finally, we will study some matrix optimization problems
that can be solved via eigenvectors. Table 1 shows the notations we will use for matrices.
We will restrict the study to the real case, since the problem we will deal with is in real
variables, although many of the results we will see can be extended to the complex case.

Notation Concept

Md′×d(R) Matrices of order d′ × d.
Md(R) Square matrices of orden d.

Aij The value of the matrix A at the i-th row and j-th column.
A.j (resp. Ai.) The j-th column (resp. the i-th row) of the matrix A.
v = (v1, . . . , vd) A vector in Rd. Vectors will be treated as column matrices.

AT The transpose of the matrix A.
Sd(R) Symmetric matrices of order d.

GLd(R) Invertible matrices of order d.
r(A), tr(A),det(A) The rank, trace and determinant of the matrix A.

Od(R) Orthogonal matrices of order d.
Sd(R)+

0 Positive semidefinite matrices of order d.
Sd(R)+ Positive definite matrices of order d.
Sd(R)−0 Negative semidefinite matrices of order d.
Sd(R)− Negative definite matrices of order d.

Table 1: Matrices notations.

2.2.1 Matrices as a Hilbert Space. Projections.

Over the set of matrices we have defined a sum operation, and a matrix product, between
matrices of orders d × r and r × n. When working with square matrices, this sum and
product give the matrix set a non-conmutative ring structure. These operations only allow
us to obtain algebraic properties of matrices, but we also want to obtain geometric and
topological properties. That is why we need to introduce a matrix inner product. We will
introduce this inner product in the simplest way, that is, we will view matrices as vectors
where we add the matrix rows one after the other, and we will consider the usual vector
inner product. This matrix product is known as Frobenius inner product.

Definition 5 We define the Frobenius inner product over the matrices space of order d′×d
as the mapping 〈·, ·〉F : Md′×d(R)×Md′×d(R)→ R given by

〈A,B〉F =
d′∑
i=1

d∑
j=1

AijBij = tr(ATB).

10
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We define the Frobenius norm over the matrices space of order d′ × d as the mapping
‖ · ‖F : Md′×d(R)→ R+

0 given by

‖A‖F =
√
〈A,A〉 =

√√√√ d′∑
i=1

d∑
j=1

A2
ij =

√
tr(ATA).

Frobenius norm is therefore identical to the euclidean norm in Rd′×d identifying matrices
with vectors as mentioned before. Viewing this norm as a matrix norm, we have to remark
that Frobenius norm is sub-multiplicative, but it is not induced by any vector norm. Some
interesting properties about Frobenius norm can be deduced from the definition. They are
listed below.

Proposition 6

1. For each A ∈Md′×d(R), ‖A‖F = ‖AT ‖F .

2. For each A ∈Md′×d(R), ‖A‖F =
√

tr(AAT )

3. If U ∈ Od(R), V ∈ Od′(R) and A ∈ Md′×d(R), then ‖AU‖F = ‖V A‖F = ‖V AU‖F =
‖A‖F .

4. If A ∈ Sd(R), then ‖A‖2F =
∑d

i=1 λ
2
i , where λ1, . . . , λd are the eigenvalues of A.

With Frobenius inner product we can apply the convex analysis theory studied in the
previous section. The positive semidefinite matrix set has a convex cone structure, that is,
it is closed under non-negative linear combinations. That is why Sd(R)+

0 is usually called
the positive semidefinite cone. Under the topology induced by symmetric matrices, we can
also see that Sd(R)+

0 is closed, as it is the intersection of closed sets:

Sd(R)+
0 = {M ∈ Sd(R) : xTMx ≥ 0 ∀x ∈ Rd} =

⋂
x∈Rd
{M ∈ Sd(R) : xTMx ≥ 0}.

So we understand, in particular, that Sd(R)+
0 is a closed convex set over symmetric

matrices, and thus we have a well-defined projection onto the positive semidefinite cone.
This property is very important for many of the optimization problems we will study,
since they will try to optimize functions defined over the positive semidefinite cone. Here,
the projected gradient descent method will be of great use, thus constituting one of the
most basic algorithms of the paradigm of semidefinite programming. We can calculate the
projection onto the positive semidefinite cone explicitly, as we will see below.

Definition 7 Let Σ ∈ Md(R) be a diagonal matrix, Σ = diag(σ1, . . . , σd). We define the
positive part of Σ as Σ+ = diag(σ+

1 , . . . , σ
+
d ), where σ+

i = max{σi, 0}. In a similar way,
we define its negative part as Σ− = diag(σ−1 , . . . , σ

−
d ), where σ−i = max{−σi, 0}.

Let A ∈ Sd(R) and let A = UDUT be a spectral decomposition of A. We define the
positive part of A as A+ = UD+UT . In a similar way we define its negative part as
A− = UD−UT .

11
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Theorem 8 (Semidefinite projection) Let A ∈ Sd(R). Then, A+ is the projection of
A onto the positive semidefinite cone.

This result has been proven by Higham (1988), and is extended easily to project any
square matrix onto the positive semidefinite cone, as we show below, although the most
interesting case is that mentioned previously.

Corollary 9 Let A ∈ Md(R). Then, the projection of A onto the positive semidefinite
cone is given by ((A+AT )/2)+.

2.2.2 Decomposition Theorems

The positive semidefinite cone allows many of the concepts and properties that we already
know about the non negative real numbers to be generalized. For example, we can similarly
define concepts as the square roots, and modules or absolute values. These concepts play
an important role in elaborating numerous decomposition theorems that involve positive
semidefinite matrices. All this theory will be developed in Appendix A, in order to prove a
specific decomposition theorem that will motivate the ways of modeling the distance metric
learning problem. The statement of this theorem is shown below.

Theorem 10 Let M ∈ Sd(R)+
0 . Then,

1. There is a matrix L ∈Md(R) so that M = LTL.

2. If K ∈Md(R) is any other matrix with M = KTK, then K = UL, where U ∈ Od(R)
(that is, L is unique up to isometries).

2.2.3 Matrix Optimization Problems

To conclude the section about matrix analysis, we consider that the analysis of several
specific optimization problems based on eigenvectors is necessary. These problems can be
expressed as the maximization of a trace, and they do not need analytical methods, like
gradient methods, to find a solution to them. It can be solved only via algebraic methods,
specifically by calculating the eigenvectors of the matrices involved in the problem. We
will see in subsequent sections that these problems appear in most of the dimensionality
reduction algorithms. We state these problems, together with their solutions, in the lines
below.

Theorem 11 Let d′, d ∈ N, with d′ ≤ d. Let A ∈ Sd(R), and we consider the optimization
problem

max
L∈Md′×d(R)

tr
(
LALT

)
s.t.: LLT = I.

The problem attains a maximum if L =

— v1 —
. . .

— vd′ —

, where v1, . . . , vd′ are orthonor-

mal eigenvectors of A corresponding to its d′ largest eigenvalues. In addition, the maximum
value is the sum of the d′ largest eigenvalues of A.
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Theorem 12 Let d′, d ∈ N, with d′ ≤ d. Let A ∈ Sd(R) and B ∈ Sd(R)+, and we consider
the optimization problem

max
L∈Md′×d(R)

tr
(
(LBLT )−1(LALT )

)

The problem attains a maximum if L =

— v1 —
. . .

— vd′ —

, where v1, . . . , vd′ are eigenvectors

of B−1A corresponding to its d′ largest eigenvalues.

Theorem 13 Let d′, d ∈ N, with d′ ≤ d. Let A,B ∈ Sd(R)+, and we consider the opti-
mization problem

max
L∈Md′×d(R)

tr
(
(LBLT )−1(LALT ) + (LALT )−1(LBLT )

)

The problem attains a maximum if L =

— v1 —
. . .

— vd′ —

, where v1, . . . , vd′ are the d′

eigenvectors of B−1A with the highest values for the expression λi + 1/λi, where λi is the
eigenvalue associated with vi.

These theorems can be proven using tools such as the Rayleigh quotient and the Courant-
Fischer theorem and its consequences. This theory will be developed in Appendix B.

2.3 Information Theory

Information theory is a branch of mathematics and computer theory, with the purpose
of establishing a rigurous measure to quantify the information and disorder contained in a
communication message. It was developed with the aim of finding limits in signal processing
operations such as compression, storage and communication. Today, its applications extend
to most fields of science and engineering.

Many concepts associated with information theory have been defined, such as entropy,
which measures the amount of uncertainty or information expected in an event, mutual
information, which measures the amount of information that one random variable contains
about another random variable, or relative entropy, which is a way of measuring the closeness
between different random variables. We will focus on the relative entropy, and the concepts
derived from it. To do this, we will first define the concept of divergence. Divergence is
a magnitude to measure the closeness between certain objects in a set. We should not
confuse divergences with distances (we will revisit this concept in Section 3.1), because the
magnitudes we will consider may not verify some of the properties required for distances,
such as symmetry or triangle inequality.

Definition 14 Let X be a set. A map D(·‖·) : X ×X → R is said to be a divergence if it
verifies the following properties:

1. Non negativity: D(x‖y) ≥ 0, for every x, y ∈ X.

13
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2. Coincidence: D(x‖y) = 0 if, and only if, x = y.

We will use divergences to measure the closeness between probability distributions. The
divergences we will use will be presented in the following paragraphs.

Definition 15 Let (Ω,A, P ) be a probability space and X : Ω → R be a random variable,
discrete or continuous, in that space. Suppose that p is the corresponding probability mass
function or density function. Suppose that q is another probability mass function or density
function. Then, we define the relative entropy or the Kullback-Leibler divergence between
p and q, as

KL(p‖q) = Ep
[
log

p(X)

q(X)

]
,

as long as such expectation exists. For the discrete case, if p and q are valued over the same
points, we have

KL(p‖q) =
∑

x∈X(Ω)

p(x) log
p(x)

q(x)
,

and for the continuous case, as long as the absolute integral is finite, we have

KL(p‖q) =

∫ +∞

−∞
p(x) log

p(x)

q(x)
dx.

For continuity reasons, we assume that 0 log(0/0) = 0.

The first step is to check that, indeed, Kullback-Leibler divergence is a divergence. This
result is known as the information inequality.

Theorem 16 (Information inequality) Kullback-Leibler divergence is a divergence, that
is, KL(p‖q) ≥ 0 and the equality holds if, and only if, p(x) = q(x) a.e. in X(Ω) (the equality
is at every point in the discrete case).

Proof This result is an immediate consequence of Jensen’s inequality (see Rudin, 1987,
chap. 3, theorem 3.3) applied to the − log function, which is strictly convex. We have

KL(p‖q) = Ep
[
log

p(X)

q(X)

]
= Ep

[
− log

q(X)

p(X)

]
≥ − logEp

[
q(X)

p(X)

]
= − log

∫
p(x)

q(x)

p(x)
dx

= − log

∫
q(x) dx = − log 1 = 0.

The proof for the discrete case is similar. In addition, the strict convexity implies that
equality holds iff p/q is constant a.e., iff p = q a.e., since they are probability density func-
tions or mass functions. And, as in the discrete case p and q are valued over sets with no
null probabilities, we have equality at every point.
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As we have already mentioned, Kullback-Leibler divergence is useful to measure closeness
between probability distributions and can be used to bring the distributions closer. However,
it is not all that useful to put the distributions away, since, as Kullback-Leibler divergence
is not symmetric, the values of KL(p‖q) and KL(q‖p) may differ significantly when p and
q are not near. That is why it is sometimes helpful to work with a symmetrization of the
Kullback-Leibler divergence known as the Jeffrey divergence.

Definition 17 The Jeffrey divergence between two probability distributions p and q for
which KL(p‖q) and KL(q‖p) exist is defined by

JF(p‖q) = KL(p‖q) + KL(q‖p).

In the discrete case we have

JF(p‖q) =
∑

x∈X(Ω)

(p(x)− q(x))(log p(x)− log q(x)).

And, for the continuous case,

JF(p‖q) =

∫ ∞
−∞

(p(x)− q(x))(log p(x)− log q(x)) dx.

It is clear that Jeffrey divergence is a divergence, as a consequence of the information
inequality, and it is also symmetric. Observe that both divergences are functions only of the
probability distributions, that is, they only depend on the values set on the distributions.
This fact allows divergence to be extended to random vectors, as long as we know its
probability density functions or mass functions.

A case of special interest in the algorithms we will discuss in subsequent sections is
the calculation of divergences between multivariate gaussian distributions. Recall that,
if µ ∈ Rd and Σ ∈ Sd(R)+, a random vector X = (X1, . . . , Xd) follows a multivariate
gaussian distribution with mean µ and covariance Σ, if it has the following probability
density function:

p(x|µ,Σ) =
1

(2π)d/2 det(Σ)1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

It is well-known that E[X] = µ and Cov(X) = E[(X − E[X])(X − E[X])T ] = Σ, thus
gaussian distributions are completely defined by its mean and covariance. We want to
establish an easy way to compute the calculation of divergences between gaussian distri-
butions. To do this, we will find relationships between the studied divergences and matrix
divergences. Matrix divergences are an alternative to the Frobenius norm for measuring the
closeness between matrices. We are interested in the ones known as Bregman divergences.

Definition 18 Let K ⊂Md(R) be an open convex set, and φ : K → R a strictly convex and
differentiable function. The Bregman divergence corresponding to φ is the map Dφ(·‖·) : K×
K → R given by

Dφ(A‖B) = φ(A)− φ(B)− tr(∇φ(B)T (A−B)).
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Effectively, Bregman divergences are also divergences, as we can write the expression
above as Dφ(A‖B) = φ(A)− φ(B)− 〈∇φ(B), A−B〉F , which is known to be non negative
when φ is strictly convex, and to take the zero value if and only if A = B. In our situation,
we are interested in choosing the log-det function to construct a Bregman divergence, that
is, the function φld : Sd(R)+ → R given by

φld(M) = − log det(M).

This function is known to be strictly convex and its gradient is ∇f(M) = M−1, for each
M in Sd(R)+ (see Boyd and Vandenberghe, 2004, sec. 3.1.5), hence we can construct the
known as log-det divergence through the expression

Dld(A‖B) = log det(B)− log det(A)− tr(B−1(A−B)) = tr(AB−1)− log det(AB−1)− d.

Once defined the log-det divergence, we are able to express the Kullback-Leibler and
Jeffrey divergences between gaussian distributions in terms of this new matrix divergence.

Theorem 19 Kullback-Leibler divergence between two multivariate gaussian distributions
defined by the probability density functions p1(x|µ1,Σ1) and p2(x|µ2,Σ2), with µ1, µ2 ∈ Rd
and Σ1,Σ2 ∈ Sd(R)+, verifies that

KL(p1‖p2) =
1

2
Dld(Σ1‖Σ2) +

1

2
‖µ1 − µ2‖2Σ−1

1
,

where ‖ · ‖Σ denotes the norm defined by the positive definite matrix Σ, that is, ‖v‖Σ =√
vTΣv, for every v ∈ Rd.

Proof of this result can be found in Davis and Dhillon (2007, sec. 3.1). A simpler
version of this theorem can be stated immediately, when we consider equal-mean gaussian
distributions.

Corollary 20 Kullback-Leibler divergence between two multivariate gaussian distributions
defined by the probability density functions p1 and p2 with equal means and covariances Σ1

and Σ2, verifies that

KL(p1‖p2) =
1

2
Dld(Σ1‖Σ2).

Using these results, we can also express the Jeffrey divergence between gaussian distri-
butions in terms of its mean vectors and covariance matrices. The following expressions can
be easily deduced from the theorems above. For more details, see also Nguyen et al. (2017,
App. B).

Corollary 21 Jeffrey divergence between two multivariate gaussian distributions defined
by the probability density functions p1(x|µ1,Σ1) and p2(x|µ2,Σ2) with µ1, µ2 ∈ Rd and
Σ1,Σ2 ∈ Sd(R)+, verifies that

JF(p1‖p2) =
1

2
tr(Σ1Σ−1

2 + Σ−1
1 Σ2)− d+

1

2
‖µ1 − µ2‖2Σ−1

1 +Σ−1
2
.

Corollary 22 Jeffrey divergence between two multivariate gaussian distributions defined by
the probability density functions p1 and p2 with equal means and covariances Σ1 and Σ2,
verifies that

JF(p1‖p2) =
1

2
tr(Σ1Σ−1

2 + Σ−1
1 Σ2)− d.
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3. Distance Metric Learning

In this section we will introduce the distance metric learning problem. To begin with, we
will remember the concept of distance, with special emphasis on those distances that will
allow us to model our problem. Next, we will describe the distance metric learning problem,
and we will finish by showing some of its applications.

3.1 Mahalanobis Distances

We will start by reviewing the concept of distance and some of its properties.

Definition 23 Let X be a non empty set. A distance or metric over X is a map d : X ×
X → R that satisfies the following properties:

1. Coincidence: d(x, y) = 0 ⇐⇒ x = y, for every x, y ∈ X.

2. Symmetry: d(x, y) = d(y, x), for every x, y ∈ X.

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈ X.

The ordered pair (X, d) is called a metric space.

The coincidence property stated above will not be important for us. That is why we
will also consider mappings known as pseudodistances, which demand only that d(x, x) = 0,
instead of the coincidence property. In fact, pseudodistances are very related with dimen-
sionality reduction, which is an important application of distance metric learning. From
now on, when we talk about of distances, we will be considering proper distances as well as
pseudodistances.

Remark 24 As an immediate consequence of the definition, we have the following addi-
tional properties about distances:

4. Non negativity: d(x, y) ≥ 0 for every x, y ∈ X.

5. Reverse triangle inequality: |d(x, y)− d(y, z)| ≤ d(x, z) for every x, y, z ∈ X.

6. Generalized triangle inequality: d(x1, xn) ≤
∑n−1

i=1 d(xi, xi+1) for x1, . . . , xn ∈ X.

When we work in the d-dimensional euclidean space we find a family of distances very
useful in the computing field. These distances are parameterized by positive semidefinite
distances and are known as Mahalanobis distances.

Definition 25 Let d ∈ N and M ∈ Sd(R)+
0 . The Mahalanobis distance corresponding to

the matrix M is the map dM : Rd × Rd → R given by

dM (x, y) =
√

(x− y)TM(x− y), x, y ∈ Rd.

Mahalanobis distances come from the (semi-)dot products in Rd defined by the positive
semidefinite matrix M . When M is full-rank, Mahalanobis distances are proper distances.
Otherwise, they are pseudodistances. Observe that the euclidean usual distance is a par-
ticular example of a Mahalanobis distance, when M is the identity matrix I. Mahalanobis
distances have additional properties specific to distances over normed spaces.
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7. Homogeneousness: d(ax, ay) = |a|d(x, y), for a ∈ R, and x, y ∈ Rd.

8. Translation invariance: d(x, y) = d(x+ z, y + z), for x, y, z ∈ Rd.

Sometimes the term “Mahalanobis distance” is used to describe the squared distances of
the form d2

M (x, y) = (x−y)TM(x−y). In the area of computing, it is much more efficient to
work with d2

M rather than with dM , as this avoids the calculation of square roots. Although
d2
M is not really a distance, it keeps the most useful properties of dM from the distance

metric learning perspective, as we will see, such as the greater or lesser closeness between
different pairs of points. That is why the use of the term “Mahalanobis distance” for both
dM and d2

M is quite widespread.

To conclude this part, we return to the issue of dimensionality reduction that we men-
tioned when introducing the concept of pseudodistance. When we work with a pseudodis-
tance σ over a set X, it is possible to define an equivalence relationship given by x ∼ y
if and only if σ(x, y) = 0, for each x, y ∈ X. With this relationship we can consider the
quotient space X/∼, and the map σ̂ : X/∼×X/∼ → R given by σ̂([x], [y]) = σ(x, y), for each
[x], [y] ∈ X/∼. This map is well defined and is a distance over the quotient space. When
σ is a Mahalanobis distance over Rd, with rank d′ < d, then the previous quotient space
becomes a vector space isomorphic to Rd′ , and the distance σ̂ is a full-rank Mahalanobis
distance over Rd′ . That is why, when we have a Mahalanobis pseudodistance on Rd, we can
view this as a proper Mahalanobis distance over a lower dimensional space, hence we have
obtained a dimensionality reduction.

3.2 Problem Description

One of the most important components in many human cognitive processes is the ability
to detect similarities between different objects. This ability has been taken to the field
of machine learning by designing algorithms that learn from a dataset according to the
similarities between those data.

To measure the similarity between data, it is necessary to introduce a distance, which
allows us to establish a measure whereby it is possible to determine when a pair of samples is
more similar than another pair of samples. However, there is an infinite number of distances
we can work with, and not all of them will adapt properly to our data. Therefore, the choice
of an adequate distance is a crucial element in this type of algorithm. The search for an
appropiate distance is the task that is carried out in distance metric learning.

Distance metric learning is a machine learning discipline with the purpose of learning
distances from a dataset. In its most general version, a dataset X = {x1, . . . , xN} is
available, on which certain similarity measures between different pairs or triplets of data
are collected. These similarities are determined by the sets

S = {(xi, xj) ∈ X × X : xi and xj are similar.},
D = {(xi, xj) ∈ X × X : xi and xj are not similar.},
R = {(xi, xj , xl) ∈ X × X × X : xi is more similar to xj than to xl.}.

With these data and similarity constraints, the problem to be solved consists in finding,
after establishing a family of distances D, those distances that best adapt to the criteria
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specified by the similarity constraints. To do this, a certain loss function ` is set, and the
distances to seek will be those that solve the optimization problem

min
d∈D

`(d, S,D,R).

When we focus on supervised learning, in addition to dataset X we have a list of labels
y1, . . . , yN corresponding to each sample in X . The general formulation of the distance
metric learning problem is easily adapted to this new situation, just by considering the sets
S and D as

S = {(xi, xj) ∈ X × X : yi = yj},
D = {(xi, xj) ∈ X × X : yi 6= yj}.

In addition, the set R may be also available by defining triplets (xi, xj , xl) where in
general yi = yj 6= yl, and also verifying certain conditions on the distance between xi and
xj , as opposed to the distance between xi and xl. This is the case, for example, for impostors
in the LMNN algorithm (see Section 4.2.1 and Weinberger and Saul, 2009). In any case,
labels have all the necessary information in the field of supervised distance metric learning.
From now on we will focus on this kind of problem.

Furthermore, focusing on the nature of the dataset, practically all of the distance metric
learning theory is developed for numerical data, due in part to the richness of the distances
available to this kind of sets, and their ability to be parameterized computationally, and
in part to the fact that nominal data can be converted to binary numerical variables, or
ordinal variables, with an appropiate preprocessing. For this reason, from now on, we will
focus on supervised learning problems with numerical datasets.

We will suppose then that X ⊂ Rd. As we saw in the previous section, for finite-
dimensional vector spaces we have the family of Mahalanobis distances, D = {dM : M ∈
Sd(R)+

0 }. With this family, we have at our disposal all the distances associated with dot
products in Rd (and in lower dimensions). In addition, this family is determined by the set
of positive semidefinite matrices, and therefore, we can use these matrices, which we will
call metric matrices, to parameterize distances. In this way, the general problem adapted
to supervised learning with Mahalanobis distances can be rewritten as

min
M∈Sd(R)+0

`(dM , (x1, y1), . . . , (xN , yN )).

However this is not the only way to parameterize this type of problem. We know, from
Theorem 10, that if M ∈ Sd(R)+

0 , then there exists a matrix L ∈Md(R) so that M = LTL,
and this matrix is unique except for an isometry. So then we get

d2
M (x, y) = (x−y)TM(x−y) = (x−y)TLTL(x−y) = (L(x−y))T (L(x−y)) = ‖L(x−y)‖22.

Therefore, we can also parameterize Mahalanobis distances through any matrix, al-
though in this case the interpretation is different. When we learn distances through positive
semidefinite matrices we are learning a new metric over Rd. When we learn distances with
the previous L matrices, we are learning a linear map (given by x 7→ Lx) that transforms
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the data in the space, and the corresponding distance is the usual euclidean distance af-
ter projecting the data onto the new space through the linear map. Both approaches are
equivalent thanks to Theorem 10.

In relation to dimensionality, it is important to note that, when the learned metric M
is not full-rank, we are actually learning a distance over a space of lower dimension (as
we mentioned in the previous section), which allows us to reduce the dimensionality of our
dataset. The same occurs when we learn linear maps that are not full-rank. We can extend
this case and opt to learn directly linear maps defined by L ∈ Md′×d(R), with d′ < d. In
this way, we ensure that data are directly projected into a space of dimension no greater
than d′.

Both learning the metric matrix M and learning the linear transformation L, are use-
ful approaches to model distance metric learning problems, each one with its advantages
and disadvantages. For example, parameterizations via M usually lead to convex optimiza-
tion problems. In contrast, convexity in problems parameterized by L is not so easy to
achieve. On the other hand, parameterizations through L make it possible to learn pro-
jections directly onto lower dimensional spaces, while dimensional constraints for problems
parameterized by M are not so easy to achieve. Let us examine these differences with simple
examples.

Example 1 Many of the functions we will want to optimize will depend on the squared
distance defined by the metric M or by the linear transformation L, that is, either they
will have terms of the form ‖v‖2M = vTMv, or of the form ‖v‖2L = ‖Lv‖22. Both the maps
M 7→ ‖v‖2M and L 7→ ‖v‖2L are convex (the first is actually affine). However, if we want to
substract terms in this way, we lose convexity in L, because the mapping L 7→ −‖v‖2L is no
longer convex. In contrast, the mapping M 7→ −‖v‖2M is still affine and, therefore, convex.

Example 2 Rank constraints are not convex, and therefore we may not dispose of a pro-
jection onto the set corresponding to those constraints, unless we learn the mapping (pa-
rameterized by L) directly to the space with the desired dimension, as explained before. For

example, if we consider the set C = {M ∈ S2(R)+
0 : r(A) ≤ 1}, we get A =

(
2 0
0 0

)
∈ C

and B =

(
0 0
0 2

)
∈ C. However, (1− λ)A+ λB = I /∈ C, for λ = 1/2.

3.3 Some Applications

This section describes some of the main applications of distance metric learning, illustrated
with several examples.

• Improve the performance of distance-based classifiers. This is one of the main
purposes of distance metric learning. Through such learning, a distance that fits well
with the dataset and the classifier can be found, improving the performance of the
classifier (Weinberger and Saul, 2009; Goldberger et al., 2005). An example is shown
in Figure 3.

• Dimensionality reduction. As we have already commented, learning a low-rank
metric implies a dimensionality reduction on the dataset we are working with. This
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Figure 3: Suppose we have a dataset in the plane, where data can belong to three different classes,
whose regions are defined by parallel lines. Suppose that we want to classify new samples
using the one nearest neighbor classifier. If we use euclidean distance, we would obtain the
classification regions shown in the image on the left, because there is a greater separation
between each sample in class B and class C than there is between the regions. However,
if we learn an adequate distance and try to classify with the nearest neighbor classifier
again, we obtain much more effective classification regions, as shown in the center image.
Finally, as we have seen, learning a metric is equivalent to learning a linear map and to
use euclidean distance in the transformed space. This is shown in the right figure. We
can also observe that data are being projected, except for precision errors, onto a line,
thus we are also reducing the dimensionality of the dataset.
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dimensionality reduction provides numerous advantages, such as a reduction in the
computational cost, both in space and time, of the algorithms that will be used later,
or the removal of the possible noise introduced when picking up the data. In addition,
some distance-based classifiers are exposed to a problem called curse of dimensionality
(see, for example, Shalev-Shwartz and Ben-David, 2014, sec. 19.2.2). By reducing the
dimension of the dataset, this problem also becomes less serious. Finally, if deemed
necessary, projections onto dimension 1, 2 and 3 would allow us to obtain visual rep-
resentations of our data, as shown in Figure 4. In general, many real-world problems
arise with a high dimensionality, and need a dimensionality reduction to be handled
properly (Van Der Maaten et al., 2009).

Figure 4: ’Digits’ dataset consists of 1797 examples. Each of them consists of a vector with 64
attributes, representing intensity values on an 8x8 image. The examples belong to 10
different classes, each of them representing the numbers from 0 to 9. By learning an
appropiate transformation we are able to project most classes on the plane, so that we
perceive clearly differentiated regions associated with each of the classes.

• Axes selection and data rearrangement. Closely related to dimensionality re-
duction, this application is a result of algorithms that learn transformations which
allow the coordinate axes to be moved (or selected according to the dimension), so
that in the new coordinate system the vectors concentrate certain measures of infor-
mation on their first components (Kokiopoulou et al., 2011). An example is shown in
Figure 5.

• Improve the performance of clustering algorithms. Many of the clustering
algorithms use a distance to measure the closeness between data, and thus establish
the clusters so that data in the same cluster are considered close for that distance.
Sometimes, although we do not know the ideal groupings of the data or the number
of clusters to establish, we can know that certain pairs of points must be in the same
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Figure 5: The dataset in the left figure seems to concentrate most of its information on the diagonal
line that joins the lower left and upper right corners. By learning an appropiate trans-
formation, we can get that direction to fall on the horizontal axis, as shown in the center
image. In this way, the first coordinate of the vectors in this new basis concentrates a
large part of the variability of the vector. In addition, it seems reasonable to think that
the values introduced by the vertical coordinate can be due to noise, so we can even keep
only the first component, as shown in the right image.

cluster and that other specific pairs must be in different clusters (Xing et al., 2003).
This happens in numerous problems, for example, when clustering web documents
(Aggarwal et al., 2012). These documents have a lot of additional information, such
as links between documents, which can be included as similarity constraints.

• Semi-supervised learning. Semi-supervised learning is a learning model in which
there is one set of labeled data and another set (generally much larger) of unlabeled
data. Both datasets are intended to learn a model that allows new data to be labeled.
Semi-supervised learning arises from the fact that in many situations collecting unla-
beled data is relatively straightforward, but assigning labels can require a supervisor to
assign them manually, which may not be feasible. In contrast, when a lot of unlabeled
data is used along with a small amount of labeled data, it is possible to considerably
improve learning outcomes, as exemplified in Figure 6. Many of these techniques
consist of constructing a graph with weighted edges from the data, where the value
of the edges depends on the distances between the data. From this graph we try to
infer the labels of the whole dataset, using different propagation algorithms (Zhu and
Ghahramani, 2002). In the construction of the graph, the choice of a suitable distance
is important, thus distance metric learning comes into play (Dhillon et al., 2010).

From the applications we have seen, we can conclude that distance metric learning can be
viewed as a preprocessing step for many distance-based learning algorithms. The algorithms
analyzed in our work focus on the first three applications of the above enumeration.
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Figure 6: Learning with only supervised information (left) versus learning with all unsupervised
information (right).

4. Algorithms for Distance Metric Learning

This section describes some of the most popular techniques currently being used in super-
vised distance metric learning. We also add a review of the principal component analysis,
although not supervised, because of its importance for other distance metric learning algo-
rithms. Some of these techniques, such as PCA or LDA (Cunningham and Ghahramani,
2015), are statistical procedures developed over the last century, which are still of great
relevance in many problems nowadays. Other more recent proposals are in the state of the
art, as is the case of NCMML (Mensink et al., 2012) or DMLMJ (Nguyen et al., 2017),
among others. Several of the most popular classic distance metric learning algorithms, such
as LMNN (Weinberger and Saul, 2009) or NCA (Goldberger et al., 2005), have also been
included.

The analyzed techniques are grouped into six subsections. Each of these subsections
describes algorithms that share the main purpose, although the purposes described in each
section are not exclusive. In the first section we will study the techniques oriented specifically
to dimensionality reduction. Next, the techniques with the purpose of learning distances
that improve the nearest neighbors classifiers will be developed (Section 4.2), followed by
those techniques that aim to improve classifiers based on centroids (Section 4.3). The fourth
subsection includes methods based on the information theory concepts studied in Section
2.3. Subsequently, several distance metric learning mechanisms with less specific goals are
described (Section 4.5). Finally, kernel-based versions of some of the above algorithms are
analyzed, to be able to work in high-dimensionality spaces (Section 4.6).

For each of the techniques we will analyze the problem they try to solve or optimize, the
mathematical formulations of those problems and the algorithms proposed to solve them.
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4.1 Dimensionality Reduction Techniques

Dimensionality reduction techniques try to learn a distance by searching for a linear trans-
formation from the dataset space to a lower dimensional euclidean space. These kinds of
algorithms share many features. For instance, they are usually efficient and their execution
involves the calculation of eigenvectors. It is important to point out that there are other
non-linear or unsupervised dimensionality reduction techniques (Lee and Verleysen, 2007),
but they are beyond the scope of this paper (with the exception of kernel versions in Sec-
tion 4.6). The algorithms we will describe are PCA (Jolliffe, 2002), LDA (Fisher, 1936) and
ANMM (Wang and Zhang, 2007).

4.1.1 PCA

PCA (principal component analysisis) (Jolliffe, 2002) is one of the most popular dimension-
ality reduction techniques in unsupervised distance metric learning. Although PCA is an
unsupervised learning algorithm, it is necessary to talk about it in our work, firstly because
of its great relevance, and more particularly, because when a supervised distance metric
learning algorithm does not allow a dimensionality reduction, PCA can be first applied to
the data in order to be able to use the algorithm later in the lower dimensional space.

Principal component analysis can be understood from two different points of view, which
end up leading to the same optimization problem. The first of these approaches consists
of finding two linear transformations, one that compresses the data to a smaller space, and
another that decompresses them in the original space, so that in the process of compression
and decompression the minimum information is lost.

Let us focus on this first approach. Suppose we have the dataset X = {x1, . . . , xN} ⊂ Rd,
and fix 0 < d′ < d. Let us also assume that data are centered, that is, that the mean of
the dataset is zero. If it is not the case, it is enough to apply previously to the data the
transformation x 7→ x − µ, where µ =

∑
xi/N is the dataset mean. We are looking for a

compression matrix L ∈ Md′×d(R), and a decompression matrix U ∈ Md×d′(R), so that,
after compressing and decompressing each data the squares of the euclidean distances to
the original data are minimal. In other words, the problem we are trying to solve is

min
L∈Md′×d(R)

U∈Md×d′ (R)

N∑
i=1

‖xi − ULxi‖22. (1)

To find a solution to this problem, first of all we will see that U and L matrices have to
be related in a very particular way.

Lemma 26 If (U,L) is a solution of the problem given in Eq. 1, then LLT = I (in Rd′)
and U = LT .

Proof We fix U ∈ Md×d′(R) and L ∈ Md′×d(R). We can assume that both U and L are
full-rank, otherwise the rank of UL is lower than d′. Note that in that case, it is always
possible to extend U and L matrices to full-rank matrices (by replacing linear combinations
in the columns by linear independent vectors as long as the dimension allows it) so that the
subspace generated extends the one generated by UL, and in such a case, the error obtained
in Eq. 1 for the extension will be, at most, the error obtained for U and L.
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We consider the linear map x 7→ ULx. The image of this map, R = {ULx : x ∈ Rd}, is a
vector subspace of Rd of dimension d′. Let {u1, . . . , ud′} be an orthonormal basis of R, and
let V ∈ Md′×d(R) the matrix that has, by rows, the vectors u1, . . . , ud′ . It is verified then
that the image of V has dimension d′ and that V V T = I. In addition, if we consider V T as
a linear map, we see that its image is R (since V T ei = ui, i = 1, . . . , d′, where {e1, . . . , ed′}
is the canonical basis of Rd′).

Therefore, every vector of R can be written as V T y, with y ∈ Rd′ . Given x ∈ Rd, y ∈ Rd′ ,
we have

‖x− V T y‖22 = 〈x− V T y, x− V T y〉
= ‖x‖2 − 2〈x, V T y〉+ ‖V T y‖2

= ‖x‖2 − 2〈y, V x〉+ yTV V T y

= ‖x‖2 − 2〈y, V x〉+ yT y

= ‖x‖2 + ‖y‖2 − 2〈y, V x〉.

If we calculate the gradient with respect to y from the last previous expression, we
obtain ∇y‖x− V T y‖22 = 2y − 2V x, which, by equating to zero, allows us to obtain a single
critical point, y = V x. The convexity of this function (it is the composition of the euclidean
norm with an affine map) assures us that this critical point is a global minimum. Therefore,
this tells us that, for each x ∈ Rd, the distance to x in the set R achieves its minimum at
the point V TV x. In particular, for the dataset X we conclude that

N∑
i=1

‖xi − ULxi‖22 ≥
N∑
i=1

‖xi − V TV xi‖22.

Since U and L were fixed, we can find a matrix V with these properties for any U and
L in the conditions of the problem, which concludes the proof.

The above lemma allows us to reformulate our problem in terms of only the matrix L,

min
L∈Md′×d(R)

LLT=I

N∑
i=1

‖xi − LTLxi‖22. (2)

Let us note now that, for x ∈ Rd and L ∈Md′×d(R), it is verified that

‖x− LTLx‖22 = 〈x− LTLx, x− LTLx〉
= ‖x‖2 − 2〈x, LTLx〉+ 〈LTLx,LTLx〉
= ‖x‖2 − 2xTLTLx+ xTLTLLTLx

= ‖x‖2 − xTLTLx
= ‖x‖2 − tr(xTLTLx)

= ‖x‖2 − tr(LxxTLT ).
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Thus, if we remove terms that do not depend on L, we can transform the problem in
Eq. 2 into the following equivalent problem:

max
L∈Md′×d(R)

LLT=I

tr
(
LΣLT

)
, (3)

where Σ =
∑N

i=1 xix
T
i is, except for a constant, the covariance matrix corresponding to

the data in X . This matrix is symmetric, and Theorem 11 guarantees that we can find a
maximum of the problem if we build L adding the d′ orthonormal eigenvectors corresponding
to the d′ largest eigenvalues of Σ. The directions that determine these vectors are the
principal directions, and the components of the data transformed in the orthonormal system
determined by the principal directions are the so-called principal components.

To conclude, the second approach from which the principal components problem can be
dealt with consists of selecting the orthogonal directions for which the variance is maximized.
We know that if Σ is the covariance matrix of X , when applying a linear transformation L
to the data, the new covariance matrix is given by LΣLT . If we want a transformation that
reduces the dimensionality and for which the variance is maximized in each variable, what
we are looking for is to take the trace of the previous matrix, which leads us back again to
Eq. 3. The symmetry of Σ ensures that we can take the main orthonormal directions that
maximize the variance for each possible value of d′.

Finally, it is important to note that the matrix L ∈ Md(R) (taking all dimensions)
that is constructed by adding Σ eigenvectors row by row is the orthogonal matrix that
diagonalizes Σ, and therefore, when L is applied to the data, the transformed data have as
the covariance matrix the diagonal matrix LΣLT = diag(λ1, . . . , λd), where λ1 ≥ · · · ≥ λd
are the eigenvalues of Σ. This tells us that the eigenvalues of the covariance matrix represent
the amount of variance explained by each of the principal directions. This provides an
additional advantage to PCA, since it allows the percentage of variance that explains each
principal component to be analyzed, in order to be able to later choose a dimension that
adjusts to the amount of variance that we want to keep in the transformed data.

Figure 7 graphically exemplifies how principal component analysis works.

4.1.2 LDA

LDA (linear discriminant analysis) (Fisher, 1936) is a classical distance metric learning
technique with the purpose of learning a projection matrix that maximizes the separation
between classes in the projected space, that is, it tries to find the directions that best
distinguish the different classes, as shown in Figure 8.

Figure 8 also allows us to compare the results of the projections obtained by PCA and
LDA, showing the most remarkable difference between the two techniques: PCA does not
take into account the labels information, while LDA does use it. We can observe that the
directions obtained by PCA and LDA do not present any type of relationship, the latter
being the only one of them that provides a data projection oriented to supervised learning.

It is also possible to observe in Figure 8 that it makes no sense to look for a second
independent direction that continues to maximize class separation, while in PCA it always
makes sense to look inductively for orthogonal directions that maximize variance. If the
dataset shown in the figure had a third class, we could find a second direction that maximizes
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Figure 7: A graphical example of PCA. The first image shows a dataset, along with the principal
directions (proportional according to the explained variance) learned by PCA. To the
right, the data is projected at maximum dimension. We observe that this projection
consists of rotating the data making the axes coincide with the principal directions. At
the bottom left, data is projected onto the first principal component. Finally, to the right,
the data recovered through the decompression matrix, along with the original data. We
can see that the PCA projection is the one that minimizes the quadratic decompression
error. In this particular case the decompressed data is on the regression line of the original
data, due to the dimensions of the problem.
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Figure 8: Graphical example of LDA and comparison with PCA. The first image shows a dataset,
with the first principal direction determined by PCA, in orange, and the direction de-
termined by LDA, in green. We observe that if we project the data on the direction
obtained by LDA they separate, as it is shown in the right image. In contrast, the di-
rection obtained by PCA only allows us to maximize the variance of the whole dataset,
since it does not consider the information of the labels.

the separation between classes, thus offering the possibility of projecting onto a plane. In
general, we will see that if we have r classes we will be able to find at most (and as long as
the dimension of the original space allows it) r− 1 directions that maximize the separation.
This indicates that the projections that LDA is going to learn will be, in general, towards
a quite low dimension, and always limited by the number of classes in the dataset.

Suppose we have the labeled dataset X = {x1, . . . , xN} ⊂ Rd, where C is the set of
all the classes in the problem and y1, . . . , yN ∈ C are the corresponding labels. Suppose
that the number of classes in the problem is |C| = r. For each c ∈ C we define the set
Cc = {i ∈ {1, . . . , N} : yi = c}, and Nc = |Cc|. We consider the mean vector of each class,

µc =
1

Nc

∑
i∈Cc

xi,

and the mean vector for the whole dataset,

µ =
1

N

∑
c∈C

∑
i∈Cc

xi =
1

N

N∑
i=1

xi.

We will define two scatter matrices, one between-class, denoted as Sb, and the other
within-class, denoted as Sw. The between-class scatter matrix is defined as

Sb =
∑
c∈C

Nc(µc − µ)(µc − µ)T .

And the within-class scatter matrix is defined as

Sw =
∑
c∈C

∑
i∈Cc

(xi − µc)(xi − µc)T .
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Note that these matrices represent, except multiplicative constants, the covariances
between the data of different classes, taking the class means as representatives for each
class in the first case, and the sum, for each class, of the covariances of that class data, in
the second case. Since we want to maximize the separation between classes we will formulate
the problem of optimization as the search for a projection L ∈ Md′×d(R) that maximizes
the quotient of the between-class variances and within-class variances determined by the
previous matrices. The problem is established as

max
L∈Md′×d(R)

tr
(
(LSwL

T )−1(LSbL
T )
)
. (4)

Theorem 12 assures us that, in order to maximize the problem given in Eq. 4, L has to
be composed by the eigenvectors corresponding to the largest eigenvalues of S−1

w Sb, as long
as Sw is invertible. In practice, this happens in most problems where N � d, because Sw is
the sum of N outer products, each of which may add a new dimension to the matrix rank.
If N � d it is likely that Sw is full-rank. This, together with the fact that Sw is positive
semidefinite, would guarantee Sw to be positive definite, thus entering into the theorem
hypothesis.

It is interesting to remark the similarity between the optimization problem in Eq. 4
and the expression of the Calinski-Harabasz index (Caliński and Harabasz, 1974), an index
used in clustering to measure the separation of the established clusters, and that uses the
same scatter matrices, and a similar quotient formulation.

Furthermore, let us note, as it was already mentioned at the beginning of this section,
that at most we can get r − 1 eigenvectors with a non zero corresponding eigenvalue. This
is because the maximum rank of Sb is r − 1, because its rank coincides with the rank of
the matrix A that has as columns the vectors µc−µ (we get Sb = Adiag(Nc1 , . . . , Ncr)A

T ),
which can have as maximum rank r, and this matrix also includes the linear combination∑
Nc(µc − µ) = 0, so at least one column is linearly dependent of the others. Therefore,

S−1
w Sb also has a maximum rank of r − 1. Consequently, the projection matrix that maxi-

mizes Eq. 4 is also going to have, at most, this rank, thus the projection will be contained
in a space of this dimension. Therefore, the choice of a dimension d′ > r−1 will not provide
any additional information to that provided by the projection onto dimension r − 1.

To conclude, although we have seen that LDA allows us to reduce dimensionality by
adding supervised information as opposed to the non supervised PCA, it can also present
some limitations:

• If the size of the dataset is too small, the within-class scatter matrix may be singular,
preventing the calculation of S−1

w Sb. In this situation, several mechanisms are pro-
posed to keep this technique going. One of the most used consists of regularizing the
problem, considering, instead of Sw, the matrix Sw +εI, where ε > 0, making Sw +εI
be positive definite. The problem of the singularity of Sw also arises if there are cor-
related attributes. This case can be avoided by eliminating redundant attributes in a
preprocessing prior to learning.

• The definition of the scatter matrices assumes, to some extent, that the data in each
class are distributed according to a multivariate gaussian distribution. Therefore, if
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the data presented other distributions, the projection learned might not be of enough
quality.

• As already mentioned, LDA only allows the extraction of r− 1 attributes, which may
be suboptimal in some cases, as a lot of information could be lost.

4.1.3 ANMM

ANMM (average neighborhood margin maximization) (Wang and Zhang, 2007) is a distance
metric learning technique specifically oriented to dimensionality reduction. It therefore
follows the same path as the aforementioned PCA and LDA, trying to solve some of their
limitations.

The objective of ANMM is to learn a linear transformation L ∈Md′×d(R), with d′ ≤ d,
that projects the data onto a lower dimensional space, so that the similarity between the
elements of the same class and the separation between classes is maximized, following the
criterion of maximization of margins that we will show next.

We consider the training dataset X = {x1, . . . , xN} ⊂ Rd, with corresponding labels
y1, . . . , yN , and we fix ξ, ζ ∈ N, and euclidean distance as the initial distance. From these
variables we will create two types of neighborhoods.

Definition 27 Let xi ∈ X .

We define the ξ-nearest homogeneous neighborhood of xi as the set of the ξ samples in
X \ {xi} nearest to xi that belong to its same class. We will denote it by N o

i .

We define the ζ-nearest heterogeneous neighborhood of xi as the set of the ζ samples
in X nearest to xi that belong to a different class. We will denote it by N e

i .

ANMM is intended to maximize the concept of average neighborhood margin, which we
define below.

Definition 28 Given xi ∈ X , its average neighborhood margin γi is defined as

γi =
∑

k : xk∈N ei

‖xi − xk‖2

|N e
i |

−
∑

j : xj∈N oi

‖xi − xj‖2

|N o
i |

.

The (global) average neighborhood margin γ is defined as

γ =
N∑
i=1

γi.

Note that, for each xi ∈ X , its average neighborhood margin represents the difference
between the average distance from xi to its heterogeneus neighbors, and the average distance
from xi to its homogeneous neighbors. Therefore, maximizing this margin allows, locally,
to move data from different classes away, and pulling those of the same class. Figure 9
graphically describes the concept of average neighborhood margin.

We are now looking for a linear transformation L that maximizes the margin associ-
ated with the projected data, {Lxi : i = 1, . . . , N}. For such data, we have the average
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Figure 9: Graphical description of the average neighborhood margin, for the sample xi, for ξ =
ζ = 3. The blue and red circumferences determine the average distance from xi to data
of the same and different classes, respectively.
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neighborhood margin corresponding to that transformation,

γL =
N∑
i=1

γLi =
N∑
i=1

 ∑
k : xk∈N ei

‖Lxi − Lxk‖2

|N e
i |

−
∑

j : xj∈N oi

‖Lxi − Lxj‖2

|N o
i |

 .

Observe that, thanks to the linearity of the trace operator, we can express

n∑
i=1

∑
k : xk∈N ei

‖Lxi − Lxk‖2

|N e
i |

= tr

 N∑
i=1

∑
k : xk∈N ei

(Lxi − Lxk)(Lxi − Lxk)T

|N e
i |


= tr

L
 N∑
i=1

∑
k : xk∈N ei

(xi − xk)(xi − xk)T

|N e
i |

LT


= tr(LSLT ),

where S =
∑

i

∑
k : xk∈N ei

(xi−xk)(xi−xk)T

|N ei |
is called the scatter matrix. In a similar way, if we

define C =
∑

i

∑
j : xj∈N oi

(xi−xj)(xi−xj)T
|N oi |

, which we will call the compactness matrix, we get

n∑
i=1

∑
j : xj∈N oi

‖Lxi − Lxj‖2

|N o
i |

= tr(LCLT ).

And therefore, combining both expressions,

γL = tr(L(S − C)LT ). (5)

The maximization of γL as presented in Eq. 5 is not restrictive enough, because it is
enough to multiply L by positive constants to get a value of γL as large as we want. That
is why the constraint LLT = I is added, so we end up with the next optimization problem:

max
L∈Md′×d(R)

tr
(
L(S − C)LT

)
s.t.: LLT = I.

Observe that S−C is symmetric, as it is the difference between two positive semidefinite
matrices (each of them is the sum of outer products). Theorem 11 tells us that the matrix L
we are looking for can be built by adding, by rows, the d′ eigenvectors of S−C corresponding
to its d′ largest eigenvalues.

To conclude, note that ANMM solves some of the issues of the previously mentioned
PCA and LDA. On the one hand, it is a supervised learning algorithm, hence it uses the
class information that is ignored by PCA. On the other hand, faced with the shortcomings
of LDA, we can see that:

• It does not have computational problems with small samples, for which scatter or
compactness matrices may be singular, because it does not have to calculate their
inverse matrices.
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• It does not make any assumption about the class distributions. The formulation of
the problem is purely geometric.

• It admits any size for dimensionality reduction. It does not impose that this size must
be lower than the number of classes.

Finally, we can also observe that, if we keep the maximum dimension d, the condition
LLT = I implies that L is orthogonal and LTL = I, thus we are just learning an isometry,
as already happened with PCA. Therefore, distance-based classifiers will only be able to
experience improvements when the chosen dimension is strictly smaller than the original
one.

4.2 Algorithms to Improve Nearest Neighbors Classifiers

In the following paragraphs we will analyze algorithms specifically designed to work with
nearest neighbors classifiers. The algorithms we will study are known as LMNN (Weinberger
and Saul, 2009) and NCA (Goldberger et al., 2005).

4.2.1 LMNN

LMNN (large margin nearest neighbors) (Weinberger and Saul, 2009) is a distance metric
learning algorithm aimed specifically at improving the accuracy of the k-nearest neighbors
classifier. It is based on the premise that this classifier will label a sample more reliably if
its k neighbors share the same label, and to do so it tries to learn a distance that maximizes
the number of samples that share its label with as many neighbors as possible.

In this way, the LMNN algorithm tries to minimize an error function that penalizes,
on the one hand, the large distance between each sample and those considered its ideal
neighbors, and on the other hand, the small distances between examples of different classes.

Suppose we have a dataset X = {x1, . . . , xN} ⊂ Rd with corresponding labels y1, . . . , yN .
To work, the algorithm makes use of the concept of target neighbors. Given a sample xi ∈ X ,
its k target neighbors are those examples of the same class as xi and different from this, for
which it is desired to be considered as neighbors in the nearest neighbors classification. If
xj is a target neighbor of xi, then we will write it as j  i. Observe that the relationship
given by  may not be symmetric. Target neighbors are fixed during the learning process.
If we have some prior information about our dataset we can use it to determine the target
neighbors. Otherwise, a good option is to use the nearest neighbors for the euclidean
distance as target neighbors.

Once the target neighbors have been established, for each distance and for each sample
in X we can create a perimeter determined by the the furthest target neighbor. We are
looking for distances for which there are no samples of other classes in this perimeter. It is
necessary to emphasize that with this perimeter there are not enough separation guarantees,
because a feasible distance could have collapsed all the target neighbors in a point, and then
the perimeter would have radius zero. For this reason, a margin determined by the radius
of the perimeter is considered, to which a positive constant is added. We will see that there
is no loss of generality, because of the function that we will define, in supposing that this
constant is 1. Any sample of a different class that invades this margin will be called an
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impostor. Our objective, therefore, will be, in addition to bringing each sample as close as
possible to its target neighbors, to try to keep impostors as far away as possible.

In mathematical terms, if our distance is determined by the linear transformation L ∈
Md(R), and xi, xj ∈ X with j  i, we will say that xl is an impostor for these samples if
yl 6= yi and ‖L(xi−xj)‖2 ≤ ‖L(xi−xj)‖2 + 1. In Figure 10 the concepts of target neighbor
and impostor are graphically described. Finally, note that the margin is defined in terms of
the squared distances, instead of considering only the distance. This will make the problem
formulation easy to solve.

Figure 10: Graphical description of target neighbors and impostors (with k = 3) for the sample xi.
The blue circle represents the margin determined by the target neighbors. All the points
of different classes in this circle are impostors. LMNN’s goal will be to bring the target
neighbors as close as possible and to remove the impostors from the circle. Therefore,
data of the same class that are not target neighbors will not have any influence, and
impostors will no longer be penalized as soon as they leave the margin, as shown in
right image. This gives a local nature to this learning technique.

We now proceed to define accurately the terms of the objective function. As already
mentioned, it will be composed of two terms. The first one will penalize distant target
neighbors and the second one will penalize nearby impostors. The first term is defined as

εpull(L) =

N∑
i=1

∑
j i

‖L(xi − xj)‖2.

The minimization of this error causes a pulling force between the data samples. The
second term is defined as

εpush(L) =
N∑
i=1

∑
j i

N∑
l=1

(1− yil)[1 + ‖L(xi − xj)‖2 − ‖L(xi − xl)‖2]+,

where yil is a binary variable which takes the value 1 if yi = yl, and 0 if yi 6= yl, and the
operator [·]+ : R→ R+

0 is defined as [z]+ = max{z, 0}. Thus, this error adds up when yil = 0
(that is, xl is in different class to xi), and the second factor is strictly positive (that is, the
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margin defined by the target neighbors is exceeded). The minimization of this second term
causes a pushing force between the data samples.

Finally, the objective function results from combining these two terms. After fixing
µ ∈]0, 1[, we define

ε(L) = (1− µ)εpull(L) + µεpush(L). (6)

The authors state that, experimentally, the choice of µ does not cause great differences
in results, so it is usually taken µ = 1/2. Minimizing this function will lead us to learn the
distance we were looking for. Note that this function is sub-differentiable, but not convex,
so if we use a subgradient descent method under this approach we may be stuck in a local
optimal. However, we can reformulate the objective function in order to make it act over
the positive semidefinite cone. If for every L ∈ Md(R) we take M = LTL ∈ Sd(R)+

0 , we
know that ‖xi − xj‖2M = ‖L(xi − xj)‖22, and consequently,

ε(M) = (1− µ)

N∑
i=1

∑
j i

‖xi − xj‖2M + µ

N∑
i=1

∑
j i

N∑
l=1

[1 + ‖xi − xj‖2M − ‖xi − xl‖2M ]+ (7)

is a convex function in M that takes the same values as ε(L). The minimization of ε(M)
in this case is subject to the constraint M ∈ Sd(R)+

0 , so the projected subgradient method,
with projections onto the positive semidefinite cone, can be used to optimize this function.
In addition, we can easily calculate a subgradient G ∈ ∂ε/∂M given by

G = (1− µ)
∑
i,j i

Oij + µ
∑

(i,j,l)∈N

(Oij −Oil),

where N is the set of triplets (i, j, l) for which xl is an impostor over xi with the margin
determined by xj , and Oij = (xi − xj)(xi − xj)T are the outer products obtained from the
distances differentiation. The first term of the gradient is constant, while the second term
only varies in each iteration with the changes of the impostors that enter or leave the set
N . These considerations allow a fairly efficient gradient calculation.

As for dimensionality reduction, two different alternatives are presented. If we keep
the optimization with respect to M , it is not feasible to add rank restrictions, as we saw
in Example 2. Therefore, the use of PCA is suggested prior to the algorithm execution,
to project the data onto its first principal components, and then apply LMNN on the
projected data. The other alternative is to optimize the objective function with respect to
L ∈Md′×d(R), with d′ < d using a gradient descent algorithm. In this case the optimization
is not convex, but we learn directly a linear transformation that reduces the dimensionality
without making changes in the optimization of Eq. 6. Authors also state, based on empirical
results, that this non-convex optimization gives good results.

Other proposals made for the improvement of this algorithm consist of applying LMNN
multiple times, learning new metrics each time, and using these metrics to determine in-
creasingly accurate target neighbors, or learning different metrics locally. Finally, although
the distance learned by LMNN is designed to be used by the k-neighbors classifier, it is
possible to use the objective function itself as a classification method. These classification
models are called energy-based. Thus, to classify a test sample xt, for each possible label
value yt, we look for k target neighbors in the training set for class yt, and evaluate the
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energy for the metric learned, finally assigning to xt the value of yt that provides the lowest
energy. According to the objective function, energy will penalize large distances between
xt and its target neighbors, impostors on the xt perimeter, and perimeters of other classes
invaded by xt. Therefore,

ypredt = arg min
yt

(1− µ)
∑
j t

‖xt − xj‖2M

+ µ
∑
j t,l

(1− ytl)
[
1 + ‖xt − xj‖2M − ‖xt − xl‖2M

]
+

+ µ
∑
i,j i

(1− yit)
[
1 + ‖xi − xj‖2M − ‖xi − xt‖2M

]
+

 .

4.2.2 NCA

NCA (neighborhood component analysis) (Goldberger et al., 2005) is another distance met-
ric learning algorithm aimed specifically at improving the accuracy of the nearest neighbors
classifiers. Its aim is to learn a linear transformation with the goal of minimizing the
leave-one-out error expected by the nearest neighbor classification. Additionally, this trans-
formation could be used to reduce the dimensionality of the dataset, and thus make the
classifier more efficient.

We consider the training set X = {x1, . . . , xN} ⊂ Rd, labeled by y1, . . . , yN . We want
to learn a distance, determined by a linear transformation L ∈ Md(R), that optimizes the
accuracy of the nearest neighbors classifier. Ideally, we would optimize the performance of
the classifier over the test dataset, but we only have the training set. Therefore, our goal
will be to try to optimize the classification leave-one-out error on the training set. The
choice of the leave-one-out error is due to the nature of the nearest neighbors classifier: as
we will learn and evaluate over the same set, the nearest neighbor of each sample would be
the sample itself, which would not allow the results to be interpreted correctly if the sample
is kept while evaluating it.

However, the function that maps each transformation L to the leave-one-out error for
the distance corresponding to L has no guarantee of differentiability, not even continuity,
so it is not easy to deal with it for optimization (observe that the image of this function is a
finite set, and its domain is a connected set, so it cannot be continous unless it is constant,
which does not happen in non-trivial examples).

To do this, NCA tries to approach the problem in a stochastic way, that is, instead of
operating with the leave-one-out error directly, it operates with its expected value for the
probability that we will define below.

Given two samples xi, xj ∈ X , we define the probability that xi has xj as its nearest
neighbor, for the distance determined by the mapping L, as follows:

pLij =
exp

(
−‖Lxi − Lxj‖2

)∑
k 6=i

exp (−‖Lxi − Lxk‖2)
(j 6= i), pLii = 0.
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Notice that, indeed, pi∗ defines a probability measure on the set {1, . . . , N}, for each
i ∈ {1, . . . , N}. Under this probability law, we can define the probability that the sample
xi is correctly classified as the sum of the probabilities that xi has as its nearest neighbor
each sample of its same class, that is

pLi =
∑
j∈Ci

pLij , where Ci = {j ∈ {1, . . . , N} : yj = yi}.

Finally, the expected number of correctly classified samples, and the function we will
try to maximize, is obtained as

f(L) =
N∑
i=1

pLi =
N∑
i=1

∑
j∈Ci

pLij =
N∑
i=1

∑
j∈Ci
j 6=i

exp
(
−‖Lxi − Lxj‖2

)∑
k 6=i

exp (−‖Lxi − Lxk‖2)
.

This function is differentiable, and its derivative can be computed as

∇f(L) = 2L
N∑
i=1

pLi N∑
k=1

pLikOik −
∑
j∈Ci

pLijOij

 ,

where Oij = (xi − xj)(xi − xj)T represent again the outer products between the differences
of the samples in X . Once the gradient is known, we can optimize the objective function
using a gradient ascent method. Note that the objective function is not concave, and can
therefore be trapped in local optima. Another issue for this algorithm is the possibility of
overfitting, if the expected leave-one-out error of the learned distance is too low. Authors
affirm, based on the experimentaal results, that normally there is no overfitting, even if we
ascend a lot in the objective function.

4.3 Algorithms to Improve Nearest Centroids Classifiers

In this block we will analyze, following the previous lines, algorithms specifically oriented to
improve distance-based classifiers, focusing in this case on the classifiers based on centroids.
The algorithms we will study are NCMML and NCMC (Mensink et al., 2012).

4.3.1 NCMML

NCMML (nearest class mean metric learning) (Mensink et al., 2012) is a distance metric
learning algorithm specifically designed to improve the nearest class mean (NCM) classifier.
To do this, it uses a probabilistic approach similar to that used by NCA to improve the
accuracy of the nearest neighbors classifier.

Nearest class mean classifier, during learning process, calculates the mean vectors of
each class subset. Then, when predicting a new sample, it assigns the class of the nearest
mean vector found. It is a very efficient and simple classifier, although its simplicity makes
it a rather weak classifier against datasets that are not grouped around their mean. We will
learn in the following lines how to learn a distance for this classifier.

We consider the training set X = {x1, . . . , xN} ⊂ Rd, with labels y1, . . . , yN ∈ C, where
C = {c1, . . . , cr} is the set of available classes. For each c ∈ C, we call µc ∈ Rd the
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mean vector of the samples belonging to the class c, that is, µc = 1
Nc

∑
i : yi=c

xi, where
Nc is the number of elements of X that belong to class c. Given a linear transformation
L ∈ Md′×d(R), we will define, for each x ∈ X and each c ∈ C, the probability that x will
be labeled with the class c (according to the nearest class mean criterion) as follows:

pL(c|x) =
exp

(
−1

2‖L(x− µc)‖2
)∑

c′∈C
exp

(
−1

2‖L(x− µc′)‖2
) .

Note that pL(·|x) effectively defines a probability in the set C. Once the above probability
is defined, the objective function that NCMML tries to maximize is the log-likelihood for
the labeled data in the training set, that is,

L(L) =
1

N

N∑
i=1

log pL(yi|xi).

This function is differentiable and its gradient is given by

∇L(L) =
1

N

N∑
i=1

∑
c∈C

αicL(µc − xi)(µc − xi)T ,

where αic = pL(c|xi) − [[yi = c]] and [[R]] denotes the indicator function for the condition
R. The maximization of this function using gradient methods is the task carried out by
NCMML.

4.3.2 NCMC

Although nearest class mean classifier is a simple, intuitive and efficient classifier in both
learning and prediction processes, it has one major drawback, and that is that it assumes
that classes are grouped around their center, which is an overly restrictive hypothesis. In
Figure 11 we can see an example where NCM is unable to give good results.

One way to solve this problem is, instead of considering the center of each class to
classify new samples, to find subgroups within each class that present a quality grouping,
and to consider the center for each of its subgroups. In this way we would have a set of
centroids for each class, and at the time of classifying a new sample, it would suffice to
select the nearest centroid and assign it the class of which it is centroid.

In this new classifier, which we will call NCMC (nearest class with multiple centroids),
the clustering algorithms come into play. There are numerous algorithms (Xu and Wunsch,
2005) to obtain a set of clusters from a dataset, each with its advantages and disadvantages.
Due to the form of our problem, in which we are interested not only in obtaining a set of
clusters for each class, but also a center for each cluster, the algorithm that meets the most
suitable conditions, besides being simple and efficient is k-Means.

To classify with NCMC, the use k-Means reduces to applying the segmentation algorithm
within each subset of data associated with each of the classes of the problem. In this way,
we obtain in a simple way the set of centroides we wanted for each class, and on which we
can carry out the classification of new data simply by searching for the nearest centroid.
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Figure 11: Dataset where the NCM classifier does not provide good results, because the centroids
of both classes are very close and both fall between the points of class 1. We will see
that, by choosing more than one centroid in an appropiate way, we can classify this set
as shown in right image.

For this algorithm, as it happens with k-Means, it is necessary to previously establish the
number of centroids for each class. These numbers can be estimated by cross validation.

Once the NCMC classifier is defined, the distance learning process (Mensink et al., 2012)
is similar to NCM. Following the notation used in NCMML, in this case, instead of a set of
class centers {µc}, with c ∈ C, we have a set of centroids, {mcj}

kc
j=1, with kc ∈ N, for each

c ∈ C. In this case, the probabilities associated with each class for the correct prediction
of x ∈ X are given by pL(c|x) =

∑kc
j=1 pL(mcj |x), where the centroids are those whose

probability is defined by the softmax function

pL(mcj |x) =
exp

(
−1

2‖L(x−mcj )‖2
)

∑
c∈C

kc∑
i=1

exp
(
−1

2‖L(x−mci)‖2
) .

Again, we maximize the log-likelihood function L(L) = 1
N

∑N
i=1 pL(yi|xi), whose gradi-

ent is given by

∇L(L) =
1

N

N∑
i=1

∑
c∈C

kc∑
j=1

αicjL(mcj − xi)(mcj − xi)T ,

where

αicj = pL(mcj |xi)− [[yi = c]]
pL(mcj |xi)∑kc
j′=1 pL(mcj′ |xi)

.
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The log-likelihood maximization by gradient methods is the task carried out by the
distance learning technique for NCMC classifier, which we will call with the same name as
the classifier.

4.4 Information Theory Based Algorithms

In this section we will study several distance metric learning algorithms based on information
theory, specifically, in the Kullback-Leibler and Jeffrey divergences. Their working scheme
is similar. First of all, they establish different probability distributions on the data, and
then they try to bring them closer or further away by using the divergences. The algorithms
we will study are ITML (Davis et al., 2007), DMLMJ (Nguyen et al., 2017) and MCML
(Globerson and Roweis, 2006).

4.4.1 ITML

ITML (information theoretic metric learning) (Davis et al., 2007) is a distance metric learn-
ing technique whose objective is to find a metric as close as possible to an initial distance,
understanding this closeness from the point of view of relative entropy, as we will formulate
later, making that metric satisfy certain similarity constraints for the trained data.

ITML starts with a dataset X = {x1, . . . , xN} ⊂ Rd, not necessarily labeled, but for
which it is known that certain pairs of samples considered similar must be at a distance
lower than or equal to u, and other pairs of samples considered not similar must be at a
distance greater than or equal to l, where u, l ∈ R+ are pre-defined constants, with relative
small and large values, respectively, with respect to the dataset.

From the data with the indicated restrictions, ITML considers an initial distance cor-
responding to a positive definite matrix M0, and tries to find a positive definite matrix M ,
as similar as possible to M0, and that respects the imposed similarity constraints. The way
to measure the similarity between M and M0 is done using information theory tools.

As we saw in Section 2.3, there is a correspondence between positive definite matrices and
multivariate gaussian distributions, if we fix the same mean vector µ for every distribution.
GivenM ∈ Sd(R)+ we can then construct a normal distribution through its density function,

p(x|M) =
1

(2π)n/2 det(M)1/2
exp

(
(x− µ)TM−1(x− µ)

)
.

Reciprocally, from this distribution, if we calculate the covariance matrix, we recover the
matrix M . Using this correspondence, we will measure the closeness between M0 and M
through the Kullback-Leibler divergence between their corresponding gaussian distributions,
that is,

KL(p(x|M0))‖p(x|M)) =

∫
p(x|M0) log

p(x|M0)

p(x|M)
dx.

Once we have defined the mechanism to measure the proximity between the metrics, we
can formulate the optimization problem of the technique ITML. If we call S and D to the
sets of pairs of indices on the elements of X that represent the samples considered similar
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and not similar, respectively, and we start from the initial metric M0, the problem is

min
M∈Sd(R)+

KL(p(x|M0)‖p(x|M))

s.t.: dM (xi, xj) ≤ u, (i, j) ∈ S
dM (xi, xj) ≥ l, (i, j) ∈ D.

(8)

We have seen in Theorem 20 that the Kullback-Leibler divergence between two gaussian
distributions with the same mean can be expressed in terms of the log-det matrix divergence.
This allows us to reformulate Eq. 8 in a way that is easier to deal with computationally:

min
M∈Sd(R)+

Dld(M0‖M)

s.t.: tr(M(xi − xj)(xi − xj)T ) ≤ u, (i, j) ∈ S
tr(M(xi − xj)(xi − xj)T ) ≥ l, (i, j) ∈ D.

(9)

We may not be able to find a metric M that simultaneously satisfies every constraint, so
the problem may not have a solution. Therefore, ITML introduces in Eq. 9 slack variables
through which we obtain a problem whose optimization establishes a trade-off between the
minimization of the divergence and the fulfillment of the constraints, in order to arrive
to an approximate solution of the original problem, in case there is no solution for this.
Finally, the computational technique used in the resolution of this optimization problem is
the Bregman projections method discussed in Section 2.1.2.

4.4.2 DMLMJ

DMLMJ (distance metric learning through the maximization of the Jeffrey divergence)
(Nguyen et al., 2017) is another distance metric learning technique based on information
theory. In this case, the tool that is used by DMLMJ is the Jeffrey divergence, to separate
as much as possible the distribution associated to similar points from that associated to
dissimilar points, in the sense that we will see below.

We consider the training set X = {x1, . . . , xN} ⊂ Rd with corresponding labels y1, . . . , yN ,
and we set k ∈ N. As we have already commented, DMLMJ tries to maximize, with respect
to the Jeffrey divergence, the separation between distributions of similar and not similar
points. To do this, we will introduce several concepts.

Definition 29 Given xi ∈ X , the k-positive neighborhood of xi is defined as the set of the
k nearest neighbors of xi in X \{xi} whose class is the same as xi. It is denoted by V +

k (xi).

The k-negative neighborhood of xi is defined as the set of the k nearest neighbors of xi
in X whose class is different from that of xi. It is denoted by V −k (xi).

The k-positive difference space of the labeled dataset is defined as the set

S = {xi − xj : xi ∈ X , xj ∈ V +
k (xi)}.

Similarly, the k-negative difference space of the labeled dataset is defined as the set

D = {xi − xj : xi ∈ X , xj ∈ V −k (xi)}.
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Sets S and D represent, therefore, the vectors with the differences between the samples
in X and its k nearest neighbors, from the same or a different class, respectively. We refer
to P and Q as the probability distributions in the spaces S and D, respectively, assuming
that they are multivariate gaussians. We will also assume that both distributions have zero
mean. This assumption is reasonable, since in practice, in most cases, if xi is a neighbor
of xj , xj is also a neighbor of xi, then both differences will appear in the difference space,
averaging zero. Finally, we will call the corresponding covariance matrices ΣS and ΣD,
respectively.

If we now apply a linear transformation to the data, x 7→ Lx, with L ∈ Md′×d(R), the
transformed distributions will still have mean zero, and covariances LΣSL

T and LΣDL
T ,

respectively. We will call these distributions PL and QL. The goal of DMLMJ is to find
a transformation that maximizes the Jeffrey divergence between PL and QL, that is, the
problem to optimize is:

max
L∈Md′×d(R)

f(L) = JF(PL‖QL) = KL(PL‖QL) + KL(QL‖PL).

As it was shown in Proposition 22, Jeffrey divergence between the gaussian distributions
PL and QL can be rewritten as

f(L) =
1

2
tr
(
(LΣSL

T )−1(LΣDL
T ) + (LΣDL

T )−1(LΣSL
T )
)
− d′.

Since d′ is constant, we obtain the equivalent problem

max
L∈Md′×d(R)

J(L) = tr
(
(LΣSL

T )−1(LΣDL
T ) + (LΣDL

T )−1(LΣSL
T )
)
.

Theorem 13 tells us that, to maximize J(L), we can choose the d′ eigenvectors of Σ−1
S ΣD,

v1, . . . , vd′ corresponding to the largest values of λi + 1/λi, with λi being the eigenvalue of
Σ−1
S ΣD associated with vi, and add this eigenvectors to the rows of L. The transformation L

constructed from these eigenvectors determines the distance that is learned by the DMLMJ
technique.

Finally, the only additional requirement necessary to complete the construction of L is
the calculation of the covariance matrices ΣS and ΣD. Bearing in mind that it has been
assumed that the mean of the distributions of S and D is 0, we can obtain these matrices
quite simply from the difference vectors, as shown below:

ΣS =
1

|S|

N∑
i=1

 ∑
xj∈V +

k (xi)

(xi − xj)(xi − xj)T

 ,
ΣD =

1

|D|

N∑
i=1

 ∑
xj∈V −k (xi)

(xi − xj)(xi − xj)T

 .
Let us observe that we can also see this algorithm as a dimensionality reduction algo-

rithm and even as an algorithm oriented to improve the nearest neighbors classifier, due to
its local character.
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4.4.3 MCML

MCML (maximally collapsing metric learning) (Globerson and Roweis, 2006) is a supervised
distance metric learning technique, based on the idea that if all the samples of the same
class were projected to the same point, and data of different classes were projected to
different points and sufficiently far away, we would have, over the projected data, an ideal
class separation. Its purpose is to learn a distance metric that allows to collapse as much
possible, within the limitations of the metric, all the samples of the same class in a single
point, arbitrarily far from the points where the samples of the remaining classes will collapse.

We consider the dataset X = {x1, . . . , xN} ⊂ Rd, with corresponding labels y1, . . . , yN .
We want to learn a metric determined by M ∈ Sd(R)+ that tries to collapse the classes as
much as possible according to the approach of the previous paragraph. The way to deal
with this problem will consist once again in using the tools provided by the information
theory. To do this, we first introduce a conditional distribution on the points of the dataset,
analogous to that established in the case of NCA. If i, j ∈ {1, . . . , N}, with i 6= j, we define
the probability that xj will be classified with the class of xi according to the distance
between xi and xj as follows:

pM (j|i) =
exp(−‖xi − xj‖2M )∑

k 6=i
exp(−‖xi − xk‖2M )

.

Furthermore, the ideal distribution we are looking for is a binary distribution for which
the probability that a sample is correctly classified is 1, and 0 otherwise, that is,

p0(j|i) ∝

{
1, yi = yj

0, yi 6= yj
.

Note that during the training process we know the real classes of the data, therefore we
can deal with this last probability. Besides, we can observe that if we get a metric M whose
associated distribution pM coincides with p0, then, under very mild sufficiency conditions
on the data, we will be able to collapse the classes in infinitely distant points.

Indeed, suppose there are at least r + 2 samples in each class, were r is the rank of
M , and that pM (j|i) = p0(j|i) for any i, j ∈ {1, . . . , N}. Then, on the one hand, from
pM (j|i) = 0 for yi 6= yj , it follows that exp(−‖xi − xj‖2M ) = 0, which undoubtedly leads
to xi and xj being infinitely distant when their classes are different. On the other hand,
from pM (i|j) ∝ 1 for any xi, xj with yi = yj , it follows that the value exp(−‖xi − xj‖2M ) is
constant for all the members of the same class, and consequently, all the points in the same
class are equidistant. As M has rank r, it is inducing a distance on a subspace of dimension
r, where it is known that at most there can be r+1 different points and equidistant between
them. Since we are assuming that there are at least r+ 2 points per class, all the points of
the same class must have a distance of 0 between them with respect to M , thus collapsing
into a single point.

Once both distributions are set, the objective of MCML is, as we have already com-
mented, to approximate pM (·|i) to p0(·|i) as much as possible, for each i, using the relative
entropy between both distributions. The optimization problem is, therefore, to minimize
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this divergence,

min
M∈Sd(R)+0

f(M) =
N∑
i=1

KL
[
p0(·|i)‖pM (·|i)

]
.

We can rewrite the objective function in terms of elementary functions:

f(M) =

N∑
i=1

N∑
j=1

p0(j|i) log
p0(j|i)
pM (j|i)

=

N∑
i=1

∑
j : yi=yj

log
1

pM (j|i)

=

N∑
i=1

∑
j : yi=yj

− log pM (j|i)

= −
N∑
i=1

∑
j : yi=yj

−‖xi − xj‖2M − log
∑
k 6=i

exp(−‖xi − xk‖2)


=

N∑
i=1

∑
j : yi=yj

‖xi − xj‖2M +
N∑
i=1

log
∑
k 6=i

exp(−‖xi − xk‖2).

(10)

This function is differentiable, and each summand of the previous expression is convex in
M , the first because it is a distance function in M (which is affine), and the second because
it is a log-sum-exp function (see Boyd and Vandenberghe, 2004, sec. 3.1.5) composed with
a distance function. In addition, the restriction M ∈ Sd(R)+

0 is convex, so we can use the
projected gradient descent algorithm with projections onto the positive semidefinite cone to
optimize the objective function. This requires an expression of the gradient of the objective
function, which can be calculated from its expression in Eq. 10:

∇f(M) =
∑

i,j : yi=yj

(xi − xj)T (xi − xj)−
∑
i

−
∑
k 6=i

(xi − xk)T (xi − xk) exp(−‖xi − xk‖2M )∑
k 6=i

exp(−‖xi − xk‖2M )
.

4.5 Other Distance Metric Learning Techniques

In this section we will study some different proposals for distance metric learning techniques.
The algorithms we will analyze are LSI (Xing et al., 2003), DML-eig (Ying and Li, 2012)
and LDML (Guillaumin et al., 2009).

4.5.1 LSI

LSI (learning with side information) (Xing et al., 2003), also sometimes referred to as MMC
(Mahalanobis metric for clustering) is a distance metric learning technique that works with
a dataset that is not necessarily labeled, which contains certain pairs of samples that are
known to be similar and, optionally, pairs of samples that are known not to be similar. It
is possibly one of the first algorithms that has helped make the concept of distance metric
learning more well known.

LSI tries to learn a metric M that respects this additional information. This is why it
can be used both in supervised learning, where similar pairs will correspond to data with the
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same label, and in unsupervised learning with similarity constraints, such as, for example,
clustering problems where it is known that certain samples must be grouped in the same
cluster.

We now formulate the problem to be optimized by LSI. Suppose we have the dataset
X = {x1, . . . , xN} ⊂ Rd, and we know additionally the set S = {(xi, xj) ∈ X×X : xi and xj
are similar.}. In addition, we may know the set D = {(xi, xj) ∈ X × X : xi and xj
are dissimilar.}. If we do not have the latter, we can take D as the complement of S in
X × X .

The first intuition to address this problem, given the information we have, is to minimize
the distances between pairs of similar points, that is, to minimize

∑
(xi,xj)∈S ‖xi − xj‖

2
M ,

where M ∈ Sd(R)+
0 . However, this will lead us to the solution M = 0, which would

not give us any productive information. That is why LSI adds the additional constraint∑
(xi,xj)∈D ‖xi − xj‖M ≥ 1, which leads us to the optimization problem

min
M

∑
(xi,xj)∈S

‖xi − xj‖2M

s.t.:
∑

(xi,xj)∈D

‖xi − xj‖M ≥ 1

M ∈ Sd(R)+
0 .

Note several observations regarding this formula. First, the choice of constant 1 in
the constraint is irrelevant; if we choose any constant c > 0 we get a metric proportional
to M . Secondly, the optimization problem is convex, because the sets determined by the
restrictions are convex and the function to optimize is also convex. Finally, we may consider
a restriction on the set D of the form

∑
(xi,xj)∈D ‖xi− xj‖

2
M ≥ 1. However, it is possible to

rewrite that problem into a formulation similar to that used on the 2-class LDA, where the
metric learned would have a rank of 1, which may not be optimal.

To easily optimize this problem, authors propose the equivalent problem

max
M

∑
(xi,xj)∈D

‖xi − xj‖M

s.a.:
∑

(xi,xj)∈S

‖xi − xj‖2M ≤ 1

M ∈ Sd(R)+
0 .

(11)

This problem with two convex constraints can be solved by a projected gradient ascent
method. In this problem, constraints are easy to satisfy separately. The first constraint
consists of a projection onto an affine half-space, while the second constraint consists of a
projection onto the positive semidefinite cone. The method of iterated projections makes it
possible to fulfill both restrictions by repeteadly projecting onto both sets until convergence
is obtained.

4.5.2 DML-eig

DML-eig (distance metric learning with eigenvalue optimization) (Ying and Li, 2012) is a
distance metric learning algorithm inspired by the LSI algorithm of the previous section,
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proposing a very similar optimization problem but offering a completely different resolution
method, based on eigenvalue optimization.

We consider, as in the previous case, a training dataset X = {x1, . . . , xN} ⊂ Rd, for
which we know two sets of pairs, S and D, of data considered similar and dissimilar,
respectively. In the previous section, in order to optimize Eq. 11 an ascending gradient
method with iterated projections was proposed, which may take a long time to converge.
DML-eig proposal consists of a slight modification of the objective function, keeping the
same constraints, which leads us to the problem

max
M

min
(xi,xj)∈D

‖xi − xj‖2M

s.t.:
∑

(xi,xj)∈S

‖xi − xj‖2M ≤ 1

M ∈ Sd(R)+
0 .

(12)

To address this problem, it is useful to introduce a notation that simplifies the indexing
of the data. First, we will denote Xij = (xi−xj)(xi−xj)T to the outer products between the
differences of the elements in X . To access pairs of elements (i, j) we will use a single index
τ ≡ (i, j). This index can be assumed ordered when necessary, to access the components
of a vector of appropiate size. The previous outer product Xij can also be written as Xτ .
Finally, for sets S and D, we also assume that they are made by indexes τ associated with
a pair (i, j) such that xi and xj are similar or dissimilar, respectively. Thus, if we denote
XS =

∑
(i,j)∈S Xij , Eq. 12 can be rewritten in terms of Frobenius dot product as

max
M

min
τ∈D
〈Xτ ,M〉

s.t.: 〈XS ,M〉 ≤ 1

M ∈ Sd(R)+
0 .

(13)

Let us see how the formulation of the problem we are looking for is established in terms
of eigenvalue optimization. For each symmetric matrix X ∈ Sd(R) we denote its highest
eigenvalue as λmax(X). Associated with the set D of dissimilar pairs we will define the
simplex

∆ =

{
u ∈ R|D| : uτ ≥ 0 ∀τ ∈ D,

∑
τ∈D

uτ = 1

}
.

We also consider the set

P = {M ∈Md(R)+
0 : tr(M) = 1}.

P is the intersection of the positive semidefinite cone with an affine subspace ofMd(R).
Sets with this structure are known as spectrahedra.

So, if XS is positive semidefinite, and we define, for each τ ∈ D, X̃τ = X
−1/2
S XτX

−1/2
S ,

we can prove (see Ying and Li, 2012) that the problem given by Eq. 13 is equivalent to the
following problem:

max
S∈P

min
u∈∆

∑
τ∈D

uτ 〈X̃τ , S〉,
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Suárez, Garćıa and Herrera

which in turn can be rewritten as an eigenvalue optimization problem:

min
u∈∆

max
S∈P

〈∑
τ∈D

uτ X̃τ , S

〉
= min

u∈∆
λmax

(∑
τ∈D

uτ X̃τ

)
. (14)

The problem of minimizing the largest eigenvalue of a symmetric matrix is well-known
and there are some iterative methods that allow this minimum to be reached (see Overton,
1988). Furthermore, Ying and Li (2012) also propose an algorithm to solve the problem
maxS∈P minu∈∆

∑
τ∈D uτ 〈X̃τ , S〉+µ

∑
τ∈D uτ log uτ , where µ > 0 is a smoothing parameter,

by means of which the problem in Eq. 14 can be approximated.

4.5.3 LDML

LDML (logistic discriminant metric learning) (Guillaumin et al., 2009) is a distance metric
learning algorithm in which the optimization model makes use of the logistic function.
Authors affirm that this technique is quite useful to learn distances on sets of labeled
images, being able to be used therefore in problems like face identification.

Recall that the logistic or sigmoid function is the map σ : R→ R given by

σ(x) =
1

1 + e−x
.

This function presents a graph with a sigmoidal shape, is differentiable, strictly increas-
ing and takes values between 0 and 1, reaching these values in their limits at infinity. These
properties allow the logistic function to be the cumulative distribution function of a random
variable, which gives it an important probabilistic utility. Its graph presents an asymptotic
behaviour from small values (in absolute value), with an exponential growth in zones close
to zero. This makes logistic function very useful for modeling binary signals. It also presents
a derivative that is easy to calculate, and can be expressed in terms of the logistic function
itself, σ′(x) = σ(x)(1− σ(x)).

Suppose we have the dataset X = {x1, . . . , xN} ⊂ Rd, with corresponding labels
y1, . . . , yN . In LDML, logistic function is used to define a probability, which will assign
the greater probability the smaller the distance between points. To measure the distance,
LDML will use a positive semidefinite matrix, resulting in the expression of the probability
as

pij,M = σ(b− ‖xi − xj‖2M ),

where b is a positive threshold value that will determine the maximum value achievable by
the logistic function, and that can be estimated by cross validation. Associated with this
probability, we can define a random variable that follows a Bernouilli distribution, and that
takes the values 0 and 1, according to whether the pair (xi, xj) belongs to the same class.
This distribution is determined by the probability mass function

fij,M (x) = (pij,M )x(1− pij,M )1−x, x ∈ {0, 1}.

The function that LDML tries to maximize is the log-likelihood of the previous distri-
bution for the given dataset, that is,

L(M) =

N∑
i,j=1

yij log pij,M + (1− yij) log(1− pij,M ),
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where yij is a binary variable that takes the value 1 if yi = yj and 0 otherwise. This function
is differentiable and concave (it is a positive combination of functions that can be expressed
as a minus log-sum-exp function, which is concave), so we have a convex maximization
problem. Keeping in mind the properties of the logistic function, if xij ≡ (xi−xj)(xi−xj)T
and pij ≡ pij,M , the gradient has the expression

∇L(M) =

N∑
i,j=1

yij
−xijpij(1− pij)

pij
+ (1− yij)

xijpij(1− pij)
1− pij

=
N∑

i,j=1

−yijxij(1− pij) + (1− yij)xijpij

=
N∑

i,j=1

xij((1− yij)pij − (1− pij)yij)

=

N∑
i,j=1

xij(pij − yij),

The projected gradient method with projections onto the positive semidefinite cone is the
semidefinite programming algorithm that is used in LDML to obtain the metric that opti-
mizes its objective function.

4.6 Kernel Distance Metric Learning

In this part we will analyze some of the kernelized versions of the algorithms presented
throughout this section. First, we will see how the kernel trick is applied in distance metric
learning, and then we will study the kernel algorithms for LMNN, ANMM, DMLMJ and
LDA.

4.6.1 The Kernel Trick for Distance Metric Learning

Kernel methods constitute a paradigm within machine learning that is very useful in many
of the problems addressed in this discipline. They usually arise in problems where the
learning algorithm capability is reduced, typically due to the shape of the dataset. A classic
learning algorithm where the kernel trick is very useful is the support vector machines
classifier (Burges, 1998). An example for this case is given in Figure 12.

In distance metric learning, the usefulness of kernel learning is due to the limitations
given by the Mahalanobis distances. Although learned metrics can later be used with
non-linear classifiers, such as the nearest neighbors classifier, the metrics themselves are
determined by linear transformations, which, in turn, are determined by the image of a
basis in the departure space, which results in the fact that we only have the freedom to
choose the image of as many data as the dimension has the space, mapping the rest of the
vectors by linearity. When the amount of data is much larger than the space dimension this
can become a limitation.

The kernel approach for distance metric learning follows a similar scheme to that of
support vector machines. If we work with a dataset X = {x1, . . . , xN} ⊂ Rd, the idea is
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Figure 12: Support vector machines and kernel trick. This binary classifier looks for the hyperplane
that best separates both classes. Therefore, it is highly limited when the dataset is not
separable by hyperplanes, as in the dataset of the upper-left image. A solution consists
of sending the data into a higher dimensional space, where data can be separated by
hyperplanes, and apply there the algorithm, as it is shown in the remaining images.
The kernel trick allows us to execute the algorithm only in terms of the dot products of
the samples in the new space, which makes it possible to work on very high dimensional
spaces, or even infinite dimensional spaces. The existence of a representer theorem for
support vector machines also allows the solution to be rewritten in terms of a vector
with the size of the number of samples.
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to send the data to a higher dimensional space, through a mapping φ : Rd → F , where F
is a Hilbert space called the feature space, and then to learn in the feature space using a
distance metric learning algorithm. The way we will learn a distance in the feature space
will be via a continuous linear transformation L : F → Rd′ , where d′ ≤ d (observe that L is
not necessarily a matrix, since F is not necessarily finite dimensional), which we will also
denote L ∈ L(F ,Rd′).

As occurs with support vector machines, a great inconvenience arises when sending the
data to the feature space, and that is that the problem dimension can highly increase,
and therefore the application of the algorithms can be very expensive computationally. In
addition, if we want to work in infinite dimensional feature spaces, it is impossible to deal
with the data in this case, unless we turn to the kernel trick.

We define the kernel function as the mapping K : Rd × Rd → R given by K(x, x′) =
〈φ(x), φ(x′)〉. The success of kernel functions is due to the fact that many learning algo-
rithms only need to know the dot products between the elements in the training set to be
able to work. This will happen in the distance metric learning algorithms we will study
later. We can observe, as an example, that the calculation of euclidean distances, which is
essential in many distance metric learning algorithms, can be made using only the kernel
function. Indeed, for x, x′ ∈ Rd, we have

‖φ(x)− φ(x′)‖2 = 〈φ(x)− φ(x′), φ(x)− φ(x′)〉
= 〈φ(x), φ(x)〉 − 2〈φ(x), φ(x′)〉+ 〈φ(x′), φ(x′)〉
= K(x, x) +K(x′, x′)− 2K(x, x′).

(15)

The next common problem for all the kernel-based distance metric learning algorithms
is how to deal with the learned transformation. Since we are trying to learn a map L ∈
L(F ,Rd′), we may not be able to write it as a matrix, and when we can, this matrix may
have dimensions that are too large. However, as L is continuous and linear, using the Riesz
representation theorem, we can rewrite L as a vector of dot products by fixed vectors, that
is, L = (〈·, w1〉, . . . , 〈·, wd′〉), where w1, . . . , wd′ ∈ F . Furthermore, for the algorithms we will
study, several representer theorems are known (see Chatpatanasiri et al., 2010; Hofmann
et al., 2008; Mika et al., 1999; Nguyen et al., 2017; Schölkopf et al., 1998). These theorems
allow the vectors wi to be expressed as a linear combination of the samples in the feature
space, that is, for each i ∈ {1, . . . , d′}, there is a vector αi = (αi1, . . . , α

i
N ) ∈ RN so that

wi =
∑N

j=1 α
i
jφ(xj). Consequently, we can see that

Lφ(x) = A

K(x1, x)
...

K(xN , x)

 , (16)

where A ∈Md′×N (R) is given by Aij = αij .

Thanks to these theorems, we can address the problem computationally as long as we
are able to calculate the coefficients of matrix A. When transforming a new sample it will
be enough to construct the previous column matrix evaluating the kernel function between
the sample and each element in the training set, and then multiplying A by this matrix. On
a final note, when training it is useful to view the kernel map as a matrix K ∈ SN (R), where
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Kij = K(xi, xj). A similar (in this case not necessarily square) matrix can be constructed
when testing, with all the dot products between the train and test samples. Choosing
the appropiate column of this matrix, we will be able to transform the corresponding test
sample using Eq. 16.

Each distance metric learning technique that supports the use of kernels will use dif-
ferent tools for its performance, each one based on the original algorithms. The following
subsections will describe the kernelizations of some of the algorithms already studied.

4.6.2 KLMNN

KLMNN (Torresani and Lee, 2007; Weinberger and Saul, 2009) is the kernelized version of
LMNN. In it, the data in X is sent to the feature space to learn in that space a distance
that minimizes the objective function set in the LMNN problem.

Although the problem formulated in the non-kernelized version was made with respect
to a positive semidefinite matrix M , using the error function given in Eq. 7, when working
in feature spaces we are more interested in dealing with a linear map, even if the convexity of
the problem is lost, in order to be able to use the representer theorem. Therefore, adapting
the error function proposed in Eq. 6 to the feature space, the LMNN problem for the
kernelized version consists of

min
L∈L(F ,Rd)

ε(L) = (1− µ)
N∑
i=1

∑
j i

‖L(φ(xi)− φ(xj))‖2

+ µ
N∑
i=1

∑
j i

N∑
l=1

(1− yil)[1 + ‖L(φ(xi)− φ(xj))‖2 − ‖L(φ(xi)− φ(xl))‖2]+.

As a consequence of the representer theorem, it follows that, for each xi ∈ X , Lφ(x) =
AK.i, where A ∈ Md′×N (R) is the matrix given by the representer theorem, and K.i

represents the i-th column of the kernel matrix for the training set. Using this in the error
expression, we obtain

(1− µ)

N∑
i=1

∑
j i

‖L(φ(xi)− φ(xj))‖2

+ µ
N∑
i=1

∑
j i

N∑
l=1

(1− yil)[1 + ‖L(φ(xi)− φ(xj))‖2 − ‖L(φ(xi)− φ(xl))‖2]+

= (1− µ)
N∑
i=1

∑
j i

‖A(K.i −K.j)‖2

+ µ
N∑
i=1

∑
j i

N∑
l=1

(1− yil)[1 + ‖A(K.i −K.j)‖2 − ‖A(K.i −K.l)‖2]+.

The above expression depends only on A and kernel functions, and minimizing it as a
function of A (we will denote it ε(A)) we get the same value as minimizing ε(L). Note also
that the expression ε(A) also requires the calculation of target neighbors and impostors, but
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these depend only on the distances in the feature space, which, as we have already seen, are
computable, as shown in Eq. 15. Therefore, all the components of ε(A) are computationally
manipulable, so if we apply a gradient descent method on ε(A) we can reduce the value of
the objective function, always keeping in mind that we can be stuck in a local optimum,
because the problem is not convex. Finally, once a matrix A that minimizes ε(A) is found,
we will have determined the corresponding map L thanks to the representer theorem, and
we can use A together with the kernel functions to transform new data.

4.6.3 KANMM

KANMM (Wang and Zhang, 2007) is the kernelized version of ANMM. In it, the data in
X is sent to the feature space via the map φ : Rd → F , where ANMM is applied to obtain
the linear map we are looking for.

Recall that the first step for the application of ANMM was to obtain the homogeneous
and heterogeneous neighborhoods for each sample xi ∈ X . Note that for this calculation
it is only necessary to compare distances in the feature space, which we have seen can be
done thanks to the kernel function, through Eq. 15. We will denote the neighborhoods in
the feature space as No

φ(xi)
y N e

φ(xi)
, respectively, for each xi.

The scatter and compactness matrices (or endomorphisms, more in general) in the fea-
ture space are given by

Sφ =
∑

i,k : φ(xk)∈Ne
φ(xi)

(φ(xi)− φ(xk))(φ(xi)− φ(xk))
T

|N e
φ(xi)
|

Cφ =
∑

i,j : φ(xj)∈No
φ(xi)

(φ(xi)− φ(xj))(φ(xi)− φ(xj))
T

|No
φ(xi)
|

.

The problem to be optimized is therefore expressed as

max
L∈L(F ,Rd′ )

tr
(
L(Sφ − Cφ)LT

)
s.t.: LLT = I.

(17)

According to the representer theorem, Lϕ(xi) = AK.i, where A is the matrix of coeffi-
cients of the representation theorem and K.i represents the i-th column of the kernel matrix
for the training set. Then,

L(φ(xi)− φ(xj))(φ(xi)− φ(xj))
TLT = A(K.i −K.j)(K.i −K.j)

TAT ,

and if we consider the matrices

S̃φ =
∑

i,k : φ(xk)∈Ne
φ(xi)

(K.i −K.k)(K.i −K.k)
T

|N e
φ(xi)
|

C̃φ =
∑

i,j : φ(xj)∈No
φ(xi)

(K.i −K.j)(K.i −K.j)
T

|No
φ(xi)
|

,
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it follows that the average neighborhood margin is given by

γL = tr(L(Sφ−Cφ)LT ) = tr(LSφLT−LCφLT ) = tr(AS̃φAT−AC̃φAT = tr(A(S̃φ−C̃φ)AT )).

If we impose the restriction AAT = I, Theorem 11 tells us again that we can take matrix
A that which contains as rows the eigenvectors of S̃φ − C̃φ corresponding to its d′ largest
eigenvalues. Observe that we can calculate both matrices from the kernel function, and the
matrix A we obtain determines the linear map, as a consequence of the representer theorem.
Therefore, we have finally obtained a kernel-based method for applying ANMM in feature
spaces.

4.6.4 KDMLMJ

KDMLMJ (Nguyen et al., 2017) is the kernelized version of DMLMJ. In it, the data in X
is sent to the feature space, where a distance is learned after applying DMLMJ.

Again, it is possible to calculate the k-positive and k-negative neighborhoods, V +
k (φ(xi))

and V −k (φ(xi)), for each xi ∈ X , thanks to Eq. 15. It is not the same with the endomor-
phisms associated with the difference spaces,

Σφ
S =

1

|S|

N∑
i=1

 ∑
φ(xj)∈V +

k (φ(xi))

(φ(xi)− φ(xj))(φ(xi)− φ(xj))
T


Σφ
D =

1

|D|

N∑
i=1

 ∑
φ(xj)∈V −k (φ(xi))

(φ(xi)− φ(xj))(φ(xi)− φ(xj))
T

 .
The optimization problem is given by

max
L∈L(F ,Rd′ )

J(L) = tr
(

(LΣφ
SL

T )−1(LΣφ
DL

T ) + (LΣφ
DL

T )−1(LΣφ
SL

T )
)
.

Again we have, as a consequence of the representer theorem, that Lφ(xi) = AK.i for
each xi ∈ X , where A is the matrix provided by the representer theorem, and K.i is the i-th
column of the kernel matrix for the training set. If, reasoning as in the previous section, we
define the matrices

U =
1

|S|

N∑
i=1

 ∑
φ(xj)∈V +

k (φ(xi))

(K.i −K.j)(K.i −K.j)
T


V =

1

|D|

N∑
i=1

 ∑
φ(xj)∈V −k (φ(xi))

(K.i −K.j)(K.i −K.j)
T

 ,
we obtain that

tr
(

(LΣφ
SL

T )−1(LΣφ
DL

T ) + (LΣφ
DL

T )−1(LΣφ
SL

T )
)

=

tr
(
(AUAT )−1(AV AT ) + (AV AT )−1(AUAT )

)
.
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As with DMLMJ, Theorem 13 tells us that we can find a matrix A that maximizes this
last equality by taking the eigenvectors of U−1V for which the value λ+ 1/λ is maximized,
where λ is the associated eigenvalue. As matrices U and V can be obtained from the kernel
function, and A determines L by the representer theorem, we have obtained an algorithm
for the application of DMLMJ in the feature space.

4.6.5 KDA

KDA (kernel discriminant analysis) (Mika et al., 1999) is the kernelized version of linear
discriminant analysis. The kernelization of this algorithm will make it possible to find non-
linear directions that nicely separate the data according to the criteria established in the
discriminant analysis. Once again, we send the data in X to the feature space using the
mapping φ : Rd → F . On that space we will apply linear discriminant analysis.

Suppose, as in LDA, that the set of possible classes is C, of cardinal r, and for each
c ∈ C we define Cc = {i ∈ {1, . . . , N} : yi = c} and Nc = |Cc|, with µφc the mean vector of
the class c, and µφ the mean vector of the whole dataset, considering it within the feature
space. The problem we want to solve in this case is

max
L∈L(F ,Rd′ )

tr
(

(LSφwL
T )−1(LSφb L

T )
)
, (18)

where Sφb and Sφw are the operators that measure the between-class and within-class scatter,
respectively, and are given by

Sφb =
∑
c∈C

(µφc − µφ)(µφc − µφ)T

Sφw =
∑
c∈C

∑
i∈Cc

(φ(xi)− µφc )(φ(xi)− µφc )T .

Again, we use the representer theorem, so that if L ∈ L(F ,Rd′), then, for each x ∈ Rd,

Lφ(x) = A

K(x1, x)
...

K(xN , x)

 ,

where A is in the conditions of the representer theorem. Let us look again for an expression
of the problem given in Eq. 18 that depends only on the kernel function and the matrix A.
To do this, we have to observe that for the mean vectors of each class we have

Lµφc = L

(
1

Nc

∑
i∈Cc

φ(xi)

)
=

1

Nc

∑
i∈Cc

Lφ(xi) =
1

Nc

∑
i∈Cc

AK.i,

where K.i is the i-th column of the kernel matrix for the training set. Similarly, for the
global mean vector, we have

Lµφ =
1

N

N∑
i=1

AK.i.
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Consequently,

L(µφc − µφ)(µφc − µφ)TLT = (Lµφc − Lµφ)(Lµφc − Lµφ)T

=

(
1

Nc

∑
i∈Cc

AK.i −
1

N

N∑
i=1

AK.i

)(
1

Nc

∑
i∈Cc

AK.i −
1

N

N∑
i=1

AK.i

)T
.

Note that the last expression depends only on A and the kernel function. Moreover, for
xi ∈ X with yi = c, we have

L(φ(xi)− µφc )(φ(xi)− µφc )TLT = (Lφ(xi)− Lµφc )(Lφ(xi)− Lµφc )T

=

AK.i −
1

Nc

∑
j∈Cc

AK.j

AK.i −
1

Nc

∑
j∈Cc

AK.j

T

=

AK.i −
1

Nc

∑
j∈Cc

AK.j

KT
.iA

T − 1

Nc

∑
j∈Cc

KT
.jA

T


= AK.iK

T
.iA

T − 1

Nc

∑
j∈Cc

AK.iK
T
.jA

T − 1

Nc

∑
j∈Cc

AK.jK
T
.iA

T +
1

N2
c

∑
j∈Cc

∑
l∈Cc

AK.jK
T
.l A

T .

By summing in i ∈ Cc, we obtain∑
i∈Cc

L(φ(xi)− µφc )(φ(xi)− µφc )TLT

=
∑
i∈Cc

AK.iK
T
.iA

T − 1

Nc

∑
j∈Cc

AK.iK
T
.jA

T − 1

Nc

∑
j∈Cc

AK.jK
T
.iA

T +
1

N2
c

∑
j∈Cc

∑
l∈Cc

AK.jK
T
.l A

T


=
∑
i∈Cc

AK.iK
T
.iA

T − 2

Nc

∑
i∈Cc

∑
j∈Cc

AK.iK
T
.jA

T +
1

N2
c

∑
i∈Cc

∑
j∈Cc

∑
l∈Cc

AK.jK
T
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where 1 ∈MNc(R) is a square matrix with the value 1 in all its entries, and Kc ∈MN×Nc
is a kernel matrix whose entries are the values of the kernel function between all the samples
in X and the samples with class c. Again, this last expression depends only on A and the
kernel function.
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If we finally define

Uc =
1

Nc

∑
i∈Cc

K.i ∈ RN , c ∈ C

Uµ =
1

N

N∑
j=1

K.i ∈ RN

U =
∑
c∈C

Nc(Uc − Uµ)(Uc − Uµ)T ∈ SN (R)

V =
∑
c∈C

Kc

(
I − 1

Nc
1

)
KT
c ∈ SN (R),

we can conclude that

tr
(

(LSφwL
T )−1(LSφb L

T )
)

= tr
(
(AV AT )−1(AUAT )

)
,

where U and V are computable using the kernel function. Therefore, we obtain a problem
equivalent to the original given in Eq. 18, but in terms of A, for which Theorem 12 states
that, if U is positive definite, we can maximize the value of the trace by taking as rows of
A the eigenvectors of V −1U corresponding to its d′ largest eigenvalues. In this way, since A
determines L thanks to the representer theorem, we obtain a kernel-based method for the
application of discriminant analysis in feature spaces.

5. Software Libraries

In this section, we will introduce the distance metric learning software we have developed.
Our software package has been developed for the Python language and aims to make a wide
variety of distance metric learning algorithms easily available to users. First, we will review
the existing software on this topic and then we will describe our software, along with its
main features.

5.1 Existing Software

Several distance metric learning software proposals have been developed in different pro-
gramming languages. The most outstanding proposals have been developed for three of the
most popular languages in the field of machine learning: R, MATLAB and Python.

In R, we can find the package dml2. This package consists of a group of 11 supervised
distance metric learning algorithms. However, many of them are not implemented yet; in
fact, there are currently only 5 algorithms available. In addition, this package has not
exhibited activity for more than a year.

In MATLAB, it is possible to find the DistLearn3 toolkit. This package is a collec-
tion of the implementations of several distance metric learning algorithms. Many of these
implementations are, in fact, those performed by the authors of the algorithm. We can

2. CRAN page: https://CRAN.R-project.org/package=dml; source code: https://github.com/

terrytangyuan/dml; docs: https://cran.r-project.org/web/packages/dml/dml.pdf.
3. DistLearn webpage: https://www.cs.cmu.edu/~liuy/distlearn.htm.
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Suárez, Garćıa and Herrera

find in this toolkit up to 9 supervised learning algorithms. In addition, it also includes
several unsupervised algorithms. However, this package seems to be out of date since 2007,
and many of the links are currently broken. It is also important to note that some of the
algorithms presented in the toolkit follow a more oriented approach to manifold learning
(Lee and Verleysen, 2007) than to the Mahalanobis distance learning approach studied in
this paper.

Finally, in Python, we can find the metric-learn4 library. This library consists of 9
supervised learning algorithms. It includes some of the classic algorithms studied in this
tutorial, such as LMNN, NCA, ITML or LSI, and the remaining algorithms are mainly
oriented to weak supervised learning, and are different from those studied in this paper.

5.2 pyDML: A Python Library for Distance Metric Learning

We have developed a Python library, called pyDML5, which contains all the 17 algorithms
studied in Section 4. Python is a programming language widely used in machine learning,
and has several libraries specialized in this field. The main one is Scikit-Learn6 (Pedregosa
et al., 2011), an efficient open-source library for machine learning, which relies on the Scipy7

ecosystem, which contains numerical calculus libraries, such as NumPy8, data processing
libraries, such as Pandas9, or data visualization libraries, such as Matplotlib10.

The choice of Python is due to the fact that until now, Python does not have an extensive
library with supervised distance learning algorithms. In Scikit-Learn it is possible to
find algorithms such as PCA or LDA, included in the group of dimensionality reduction
techniques, but we cannot find any other distance metric learning algorithm beyond this. We
have also seen in the previous section that the existing supervised distance metric learning
software is not very elaborate. The pyDML library tries to fill these gaps, providing numerous
supervised distance learning algorithms, both classic algorithms and new proposals.

The design followed for the development of the algorithms has preserved the structure of
the algorithms of the Scikit-Learn library. In particular, the distance metric learning al-
gorithms are included in the group of transformation algorithms, where the transformation
consists precisely in applying the learned linear map to the samples. Therefore, the al-
gorithms have been implemented as subclasses of the sklearn.base.TransformerMixin11

class of the Scikit-Learn toolkit.

Additionally, distance metric learning algorithms provide a positive semidefinite met-
ric matrix (except kernel-based algorithms) and a linear transformation (both recoverable
from each other, although each algorithm learns only one of these options). It is im-
portant to be able to access them for distance calculation, so all distance metric learn-
ing algorithms will implement, in addition to the methods fit and transform defined

4. PyPI page: https://pypi.org/project/metric-learn/; source code: https://github.com/

metric-learn/metric-learn; docs: http://metric-learn.github.io/metric-learn/.
5. The source code of pyDML is available in GitHub: https://github.com/jlsuarezdiaz/pyDML.
6. http://scikit-learn.org/stable/.
7. https://www.scipy.org/.
8. http://www.numpy.org/.
9. http://pandas.pydata.org/.

10. https://matplotlib.org/.
11. http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#

sklearn.base.TransformerMixin

58

https://pypi.org/project/metric-learn/
https://github.com/metric-learn/metric-learn
https://github.com/metric-learn/metric-learn
http://metric-learn.github.io/metric-learn/
https://github.com/jlsuarezdiaz/pyDML
http://scikit-learn.org/stable/
https://www.scipy.org/
http://www.numpy.org/
http://pandas.pydata.org/
https://matplotlib.org/
http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin
http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin


Distance Metric Learning

in sklearn.base.TransformerMixin to learn and transform, respectively, the methods
metric and transformer, which will give access to these elements.

For this reason, an abstract class DML Algorithm has been implemented, which provides
the functionalities common to all the distance metric learning algorithms, that is, it allows
the learned matrices to be accessed through the methods metric() and transformer(),
and defines the function transform(X), which returns the dataset resulting from applying
the learned transformation to each sample in X. It is also included a metadata() method,
which provides additional information about what each algorithm has learned, useful when
estimating parameters.

Each of the distance metric learning algorithms implements a subclass of DML Algorithm

implementing a method fit(X,y), responsible for learning the distance from the labeled
data given by X and y. For kernel-based algorithms, a subclass of DML Algorithm has been
created, which provides the kernel-specific functionalities. Figure 13 describes the classes
structure of our software.

Figure 13: Class diagram of the algorithms developed in pyDML (only LDA, ANMM and KANMM
are shown, but the rest of the algorithms follow a similar structure, overriding the
metric() or transformer() method, depending on how the algorithm has learned).

It is important to emphasize that these algorithms include different hyperparameters
that can be modified to improve the performance ot to change the conditions of the learned
distances. These parameters vary with each algorithm, and the most common and of great-
est relevance in the execution of the algorithms are:

• Number of dimensions. The desired dimension for the transformation to learn. It
is present in all dimensionality reduction algorithms, although most of the algorithms
that learn linear maps admit this parameter.
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• Number of neighbors. The parameters of this type determine how many samples
are chosen for the construction of neighborhoods in the algorithms that perform these
constructions, as is the case for ANMM, LMNN or DMLMJ.

• Descent method or solver. In algorithms that minimize a differentiable function,
the desired descent method can be established. For unconstrained problems, valid
options are currently batch gradient descent (BGD) or stochastic gradient descent
(SGD). For constrained problems over the positive semidefinite cone, the semidefinite
programming method (SDP) consisting of projected gradient descent is allowed.

• Learning rate. In algorithms based on gradient descent, an initial value for the
learning rate can be set, as well as how it varies: constant or adaptive. In the latter
case, if the gradient iteration has improved the value of the objective function, the
rate is increased. Otherwise, it is reduced. The increase and decrease factors are also
parameters that can be set.

• Stop criteria. In algorithms based on gradient descent, it is necessary to establish
stop criteria. The criteria available in most algorithms consist of maximum number
of iterations, precision (closeness of the gradient norm to zero) or tolerance (difference
between two iterations in the descent algorithm).

• Regularization parameters. Some algorithms require regularization parameters,
of different natures depending on the algorithm. Both the regularization parameters
and the criteria that determine their application can be set in the algorithms that
require it.

A detailed description of all hyperparameters for each algorithm can be found in the
pyDML’s full documentation12.

In addition to the learning algorithms, two distance-based classifiers have been devel-
oped, also following the Scikit-Learn structure. The first one is a wrapper for the nearest
neighbors classifier provided in Scikit-Learn, to make it easier to act in conjunction with
a distance metric learning algorithm, which until now was not possible to do directly with
the Scikit-Learn nearest neighbors classifier. The second one is the multiple centroid clas-
sifier NCMC. Scikit-Learn currently has only the nearest class mean classifier13. NCMC
classifier adds the possibility of using more than one centroid per class, and thus can be
optimized by its corresponding distance metric learning algorithm NCMC.

The pyDML library also incorporates graphical tools for the representation and evaluation
of the learned distances, which use the Matplotlib library internally. These tools allow
labeled data to be represented, along with the regions determined by any Scikit-Learn

classifier (classifier plot). They also show how a region determined by a distance-based
classifier changes when the distance is changed (dml plot). A specialized function makes it
easier to plot regions for the nearest neighbors classifiers (knn plot). Similarly, functions
are added to represent different attribute pairs, along with a section of the classifier region,
for higher dimensional datasets (classifier pairplots, dml pairplots, knn pairplots).

12. https://pydml.readthedocs.io/
13. See http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.

html
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Finally, multiple plots comparing different classifiers or distances can also be elaborated,
thanks to the function dml multiplot. A detailed description of these functions and their
arguments can be found again in the documentation12. The parameters of the tune func-
tions can also be found here. This is the last additional functionality included, which allows
the parameters of the distance metric learning algorithms to be easily estimated with cross
validation, using the success rate of a k-neighbors classifier or some of the metadata of the
algorithms as validation metrics.

The pyDML library can be installed through PyPI (Python package index ), using the
command pip install pyDML in a shell. It is also possible to download or clone the
repository directly from GitHub. In such a case, the installation of the software package
can be done by running the setup script available in the root directory, using the command
python setup.py install. Once installed, we can access all distance metric learning
algorithms, and the additional functionalities, by importing the desired class within the
dml module.

As already mentioned, the way distance metric learning algorithms are used is similar
to the Scikit-Learn transformers. Figure 14 shows an example for the case of the NCA
algorithm. With the rest of the algorithms the operation is the same, possibly varying the
different hyperparameters.

The use of the classifiers in the library is analogous to the use of Scikit-Learn classifiers.
For the plotting functions, an example is shown in Figure 15. More detailed examples of
all the possibilities offered by pyDML can be found in the documentation14.

6. Experimental Framework and Results

With the pyDML library developed and explained in the previous section, several experiments
have been carried out with the different algorithms implemented. This section describes
these experiments and shows the results.

6.1 Description of the Experiments

For the distance metric learning algorithms studied, a collection of experiments has been
developed, consisting of the following procedures.

1. Evaluation of all the algorithms capable of learning at maximum dimension, applied
to the k-nearest neighbors classification, for different values of k.

2. Evaluation of the algorithms aimed at improving nearest centroid classifiers, applied
to the corresponding centroid-based classifiers.

3. Evaluation of kernel-based algorithms, experimenting with different kernels, applied
to the nearest neighbors classification.

4. Evaluation of algorithms capable of reducing dimensionality, for different dimensions,
applied to the nearest neighbors classification.

14. https://pydml.readthedocs.io/en/latest/examples.html.
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1 >>> import numpy as np # NumPy library

2 >>> from sklearn.datasets import load_iris # Iris dataset

3 >>> from dml import NCA # Loading DML algorithm

4

5 >>> # Loading dataset

6 >>> iris = load_iris()

7 >>> X = iris['data']

8 >>> y = iris['target']

9

10 >>> nca = NCA() # DML construction

11 >>> nca.fit(X,y) # Fitting algorithm

12

13 >>> # We can look at the algorithm metadata after fitting it

14 >>> meta = nca.metadata()

15 >>> meta

16 {'final_expectance': 0.95771240234375,

17 'initial_expectance': 0.8380491129557291,

18 'num_iters': 3}

19

20 >>> M = nca.metric() # We can see the metric the algorithm has learned.

21 >>> M

22 array([[ 1.19098678, 0.51293714, -2.15818151, -2.01464351],

23 [ 0.51293714, 1.58128238, -2.14573777, -2.10714773],

24 [-2.15818151, -2.14573777, 6.46881853, 5.86280474],

25 [-2.01464351, -2.10714773, 5.86280474, 6.83271473]])

26

27 >>> L = nca.transformer() # Equivalently, we can see the learned linear map.

28 >>> L

29 array([[ 0.77961001, -0.01911998, -0.35862791, -0.23992861],

30 [-0.04442949, 1.00747788, -0.29936559, -0.25812144],

31 [-0.60744415, -0.57288453, 2.16095076, 1.35212555],

32 [-0.46068713, -0.48755353, 1.25732916, 2.20913531]])

33

34 # Finally, we can obtain the transformed data, or transform new data.

35 >>> Lx = nca.transform() # Transforming training set.

36 >>> Lx[:5,:]

37 array([[ 3.35902632, 2.8288461 , -1.80730485, -1.85385382],

38 [ 3.21266431, 2.33399305, -1.39937375, -1.51793964],

39 [ 3.0887811 , 2.57431109, -1.60855691, -1.64904583],

40 [ 2.94100652, 2.41813313, -1.05833389, -1.30275593],

41 [ 3.27915332, 2.93403684, -1.80384889, -1.85654046]])

Figure 14: Use of distance metric learning algorithms in pyDML.
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1 >>> import numpy as np # NumPy library

2 >>> from sklearn.datasets import load_iris # Iris dataset

3 >>> from dml import NCA, LDA, NCMC_Classifier, dml_multiplot # Learning functions

4 >>> iris = load_iris()

5 >>> X = iris['data']

6 >>> y = iris['target']

7 >>> # Initializing learning algorithms.

8 >>> nca = NCA()

9 >>> lda = LDA()

10 >>> ncmc = NCMC()

11 >>> # Let's see how the 3NN and NCMC classifiers change after learning a distance.

12 >>> # We will plot 4 figures: {NCMC, NCMC+NCA, 3-NN, 3-NN+LDA}

13 >>> dml_multiplot(X[:,[0,1]],y,nrow=2,ncol=2,ks=[None,None,3,3],

14 >>> clfs=[ncmc,ncmc,None,None],dmls=[None,nca,None,lda],

15 >>> transforms=[False,False,False,False],title="Comparing",

16 >>> subtitles=["NCMC","NCMC + NCA","3-NN","3-NN + LDA"],

17 >>> cmap="rainbow",figsize=(12,12))

Figure 15: Plotting distance based classifiers with pyDML.
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When in experiment 1 we talk about “capable of learning at maximum dimension” we
are excluding those dimensionality reduction algorithms that only learn a change of axes, as
is the case of PCA and ANMM, which at maximum dimension learn a transformation whose
associated distance is still the euclidean. LDA is kept, assuming that it will always take the
maximum dimension that it is able to, according to the number of classes of the problem.
The algorithms oriented to centroid-based classifiers are also excluded from experiment 1,
together with those based on kernels, which will be analyzed in the experiments 2 and 3,
respectively.

The stated experiments indicate that the magnitude with which we will measure the
performance of the algorithms is the result of the k-neighbors classification, except in the
case of the algorithms based on centroids, which will use their corresponding classifier. These
classifiers will be evaluated by a 10-fold cross validation. The results obtained from the
predictions on the training set will also be included, in order to evaluate possible overfitting.
The algorithms will be executed using their default parameters, which can be found in the
pyDML documentation. These default parameters have been set with standard values. The
following exceptions to the default parameters have been made:

• The LSI algorithm will have the parameter supervised = True, as it will be used for
supervised learning.

• In the dimensionality reduction experiment (4), the algorithms will have the dimension
number parameter set according to the dimension being evaluated.

• LMNN and KLMNN will have their parameter k equal to the number of neighbors
being considered in the nearest neighbors classification.

• LMNN will be executed with stochastic gradient descent, instead of semidefinite pro-
gramming, in dimensionality reduction experiments, thus learning a linear transfor-
mation instead of a metric.

• ANMM and KANMM will have their parameters n friends and n enemies equal to
the number of neighbors being considered in the nearest neighbors classification.

• DMLMJ and KDMLMJ will have their parameter n neighbors equal to the number
of neighbors being considered in the nearest neighbors classification.

• NCMC will have its parameter centroids num equal to the parameter centroids num

being considered in its corresponding classifier, NCMC Classifier.

As for the datasets used in the experiments, up to 34 datasets have been collected, all of
them available in KEEL15. All these datasets are numeric and without missing values, being
oriented to standard classification problems. In addition, although some of the distance
metric learning algorithms scale well with the number of samples, others cannot deal with
datasets that are too large, so it was decided to select, for sets with a high number of samples,
a subset of size that all algorithms can deal with, keeping the class distribution the same.

15. KEEL, knowledge extraction based on evolutionary learning (Triguero et al., 2017): http://www.keel.

es/.
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Thus, the characteristics of the datasets are described in Table 2. All datasets have been
min-max normalized to the interval [0, 1], feature to feature, prior to the execution of the
experiments.

Dataset Number of samples Number of features Number of classes

appendicitis 106 7 2
balance 625 4 3
bupa 345 6 2
cleveland 297 13 5
glass 214 9 7
hepatitis 80 19 2
ionosphere 351 33 2
iris 150 4 3
monk-2 432 6 2
newthyroid 215 5 3
sonar 208 60 2
wine 176 13 3
movement libras 360 90 15
pima 768 8 2
vehicle 846 18 4
vowel 990 13 11
wdbc 569 30 2
wisconsin 683 9 2
banana (20 %) 1,060 2 2
digits 1,797 64 10
letter (10 %) 2,010 16 26
magic (10 %) 1,903 10 2
optdigits 1,127 64 10
page-blocks (20 %) 1,089 10 4
phoneme (20 %) 1,081 5 2
ring (20 %) 1,480 20 2
satimage (20 %) 1,289 36 7
segment (20 %) 462 19 7
spambase (10 %) 460 57 2
texture (20 %) 1,100 40 11
thyroid (20 %) 1,440 21 3
titanic 2,201 3 2
twonorm (20 %) 1,481 20 2
winequality-red 1,599 11 11

Table 2: Datasets used in the experiments.

Finally, we describe the details of the experiments 1, 2, 3 and 4:

1. Algorithms will be evaluated with the classifiers 3-NN, 5-NN and 7-NN.

2. NCMML will be evaluated with the Scikit-Learn NCM clasifier, while NCMC will
be evaluated with the associated pyDML classifier for two different values: 2 centroids
per class and 3 centroids per class.

3. Algorithms will be evaluated with 3-NN classifier, using the following kernels: linear
(Linear), grade-2 (Poly-2) and grade-3 (Poly-3) polynomials, gaussian (RBF) and
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laplacian (Laplacian). For the comparison, the kernel version of PCA16 will be also
included. In this case, only the smallest datasets will be considered, so that they can
be applicable to the algorithms that scale the worst with the dimension (recall that
the kernel trick forces algorithms to work in dimensions of the order of the number of
samples).

4. Algorithms will be evaluated with the classifiers 3-NN, 5-NN and 7-NN. The dimen-
sions to use will be: 1, 2, 3, 5, 10, 20, 30, 40, 50, the maximum dimension of the dataset,
and the number of classes of the dataset minus 1. In this case, the following high-
dimensionality datasets are selected: sonar, movement libras and spambase. The
algorithms to be evaluated in this expriment will be: PCA, LDA, ANMM, DMLMJ,
LMNN and NCA.

6.2 Results

This section shows the results of the cross-validation for the different experiments. We
will show in this text only the results of the 3-NN classifier, for those experiments that
use nearest neighbors classifiers. The results obtained for the remaining k-NN used in the
experiments are available on the pyDML-Stats17 website, where all the results are stored
and kept up to date with the different changes in our software. The scripts used to do
the experiments can also be found in this website. To the results of the experiments 1, 2
and 3 we have added the average score obtained, and the average ranking. This ranking
has been made by assigning integer values between 1 and 10 (adding half fractions in case
of a tie) according to the position of the algorithms over each dataset, 1 being the best
algorithm, and m the worst one, where m is the number of algorithms being compared in
each experiment. The content of the different tables elaborated is described below.

• Table 3 shows the cross-validation results obtained for experiment 1, using the 3-NN
score as evaluation measure. Some cells do not show results because the algorithm
did not converge.

• Table 4 shows the results of experiment 2. The evaluation measures were the NCM and
NCMC classifiers with 2 and 3 centroids per class. For each classifier, the euclidean
distance (Euclidean + CLF) and the distance learning algorithm associated with the
classifier (NCMML / NCMC (2 ctrd) / NCMC (3 ctrd)) have been evaluated.

• Table 5 shows the cross-validation results obtained on the training set for the kernel-
based algorithms using the 3-NN classifier. Table 6 shows the corresponding results
on the test set.

• Table 7 shows the cross-validation results for the experiment 4 in dataset sonar, using
the classifier 3-NN. On the left are the results for the training set, and on the right,
the results for the test set. Each row shows the results for the different dimensions

16. It is implemented in Scikit-Learn: http://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.KernelPCA.html. Its theoretical details can be found in Schölkopf et al. (1998).

17. Source code: https://github.com/jlsuarezdiaz/pyDML-Stats. The current website is located at
https://jlsuarezdiaz.github.io/software/pyDML/stats/
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evaluated. Tables 8 and 9 show the corresponding dimensionality results over the
datasets movement libras and sonar, respectively.
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Euclidean LDA ITML DMLMJ NCA LMNN LSI DML-eig MCML LDML
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

appendicitis .8428 .8339 .8428 .8522 .8533 .8604 .8490 .8256 .8700 .8504 .8407 .8422 .8659 .8630 .8585 .8622 .8502 .8513 .8669 .8422
balance .8049 .8082 .8885 .8992 .8986 .8943 .8286 .8191 .9592 .9584 .8202 .8175 .9182 .9280 .8947 .8945 .8816 .8737 .8874 .8895
bupa .6231 .6546 .6338 .6465 .6466 .6281 .6660 .6776 .6943 .5994 .6099 .6342 .6363 .6284 .5993 .6120 .5716 .5742 .5826 .5854
cleveland .5570 .5468 .5694 .5502 .5488 .5523 .5626 .5636 .6804 .5436 .5780 .5803 .5518 .5722 .5896 .5829 .5978 .5785 .5784 .5972
glass .6759 .7015 .6235 .6231 .6453 .6549 .7092 .7041 .7065 .6917 .6780 .7067 .6495 .6235 .6407 .6263 .6319 .5850 .6242 .6063
hepatitis .8236 .8325 .9402 .8609 .9002 .8815 .8821 .8894 .9569 .8325 .9514 .8418 .9139 .9130 .9125 .9176 .9250 .8829 .9458 .8547
ionosphere .8569 .8550 .8834 .8394 .8771 .8862 .8752 .8605 .9534 .9084 .9281 .8859 .8898 .8768 .8904 .8741 .9053 .8630 .8907 .8512
iris .9533 .9533 .9681 .9533 .9703 .9733 .9585 .9666 .9755 .9666 .9481 .9400 .9703 .9800 .9585 .9600 .9688 .9466 .9807 .9600
monk-2 .9578 .9655 .9451 .9561 .9223 .9352 .9709 .9724 1.000 1.000 .9812 .9816 1.000 1.000 .9878 .9909 .9665 .9676 .9382 .9495
newthyroid .9421 .9538 .9596 .9586 .9452 .9398 .9436 .9448 .9700 .9722 .9658 .9725 .9591 .9634 .9602 .9629 .9565 .9582 .9509 .9675
sonar .8317 .8370 .9011 .7782 .8435 .8120 .9097 .8361 .9823 .8703 .9941 .8742 .8531 .8506 .8547 .7975 .8755 .8563 .8766 .7886
wine .9606 .9606 .9968 .9888 .9900 .9773 .9812 .9662 .9956 .9882 .9956 .9832 .9837 .9662 .9975 .9767 .9975 .9832 .9956 .9888
movement libras .7972 .8139 .8685 .6642 .8038 .7992 .8460 .8649 .8516 .8319 .8065 .8020 .7351 .7440 .7970 .7872 .8063 .8073 .7256 .7360
pima .7372 .7396 .7259 .7525 .7148 .7149 .7366 .7422 .7841 .7370 .7290 .7278 .7206 .7395 .7174 .7266 .7173 .7239 .7285 .7240
vehicle .7077 .7125 .7698 .7623 .7625 .7516 .7643 .7551 .8186 .7550 .6855 .6757 .6590 .6666 .6506 .6501 .7398 .7369 .7186 .7170
vowel .9699 .9787 .9680 .9777 .9423 .9535 .9751 .9808 .9799 .9808 .9693 .9777 .9436 .9474 .6719 .6757 .8558 .8737 .8885 .9090
wdbc .9679 .9716 .9732 .9664 .9714 .9664 .9669 .9648 .9751 .9700 .9638 .9630 .9705 .9682 .9546 .9507 .9714 .9648 .9476 .9438
wisconsin .9694 .9678 .9663 .9677 .9609 .9590 .9695 .9678 .9723 .9648 .9692 .9663 .9684 .9722 .9673 .9707 .9585 .9546 .9650 .9663
banana .8543 .8555 .6504 .6469 .8536 .8556 .8550 .8565 .8553 .8583 .8574 .8583 .8535 .8517 .6718 .6878 .6282 .6102 .6268 .6319
digits .9878 .9866 .9769 .9683 .9798 .9728 .9869 .9834 .9980 .9894 .9993 .9860 .9264 .9102 .8269 .8168 .9734 .9688 .9797 .9816
letter .7174 .7208 .7955 .7967 .7161 .7195 .8163 .8204 .8565 .8610 .7048 .7162 .5396 .5496 .3191 .3214 .7600 .7534 .6217 .6372
magic .8070 .8050 .7436 .7361 .8069 .8061 .8161 .8071 .8396 .8145 .7979 .7945 .7946 .7924 .7508 .7525 .7738 .7766 .7077 .6951
optdigits .9756 .9777 .9671 .9512 .9731 .9669 .9770 .9761 .9956 .9759 .9986 .9840 .9398 .9306 .8164 .8022 .9761 .9591 .9596 .9591
page-blocks .9495 .9495 .9697 .9679 .9614 .9614 .9515 .9504 .9637 .9577 .9459 .9439 - - .9515 .9523 .9613 .9642 .9438 .9404
phoneme .7957 .7992 .7321 .7243 .7853 .7770 .7960 .8002 .8044 .7936 .7928 .7946 .7642 .7668 .7361 .7483 .7654 .7632 .7320 .7112
ring .6410 .6432 .7289 .7101 .7290 .7352 .6440 .6453 .9267 .8459 .6750 .6615 .8331 .8162 .7308 .7223 .8315 .8223 .5634 .5648
satimage .8585 .8564 .8541 .8387 .8495 .8341 .8670 .8643 .8764 .8511 .8565 .8558 .8490 .8465 .8153 .8130 .8246 .8171 .5427 .5501
segment .8970 .9020 .9353 .9370 .9357 .9265 .9071 .9081 .9451 .9187 .9076 .8928 .8898 .8853 .9095 .9068 .9367 .9319 .8818 .8710
spambase .8500 .8654 .9215 .8871 .8801 .8766 .8635 .8525 .9391 .9154 .9215 .9070 .9210 .9111 .9077 .9046 .9176 .9047 .9229 .8982
texture .9560 .9618 .9983 .9981 .9801 .9754 .9864 .9854 .9843 .9800 .9180 .9218 .9333 .9400 .8979 .9009 .9740 .9745 .8658 .8718
thyroid .9313 .9319 .9375 .9450 .9397 .9402 .9355 .9361 .9459 .9395 .9320 .9319 .9357 .9354 .9458 .9485 .9377 .9320 .9587 .9583
titanic .7607 .7583 .7727 .7804 .7682 .7609 .7612 .7587 .5709 .6764 .6018 .6964 - - .7107 .7331 .7150 .7253 .7108 .7341
twonorm .9609 .9595 .9778 .9750 .9685 .9669 .9612 .9561 .9817 .9790 .9778 .9756 .9776 .9770 .9782 .9810 .9708 .9730 .9789 .9804
winequality-red .5808 .5865 .5657 .5733 .5754 .5828 .5828 .5860 .6022 .5766 .5647 .5772 .5656 .5809 .5281 .5292 .5675 .5611 .5376 .5471

AVG RANKING 6.558 5.661 5.147 5.426 5.808 5.382 4.926 4.544 1.705 3.661 5.220 5.279 6.411 5.382 6.691 6.220 5.735 6.279 6.794 7.161
AVG SCORE .8383 .8425 .8515 .8363 .8500 .8470 .8560 .8526 .8886 .8634 .8490 .8432 .8410 .8405 .8059 .8041 .8438 .8359 .8125 .8062

Table 3: Results of cross-validation with 3-NN.

68



Distance Metric Learning

Euclidean + NCM NCMML Euclidean + NCM (2 ctrd) NCMC (2 ctrd) Euclidean + NCM (3 ctrd) NCMC (3 ctrd)
Train Test Train Test Train Test Train Test Train Test Train Test

appendicitis .8365 .8640 .8512 .8440 .6479 .6031 .6248 .6246 .8102 .7800 .7557 .7266
balance .7496 .7475 .6865 .6864 .7004 .6721 .8280 .8225 .7160 .6654 .8321 .8222
bupa .5996 .6004 .6628 .6407 .6270 .6058 .6247 .6260 .6589 .5903 .6409 .5826
cleveland .5742 .5377 .6296 .5516 .5727 .5050 .6280 .5093 .6203 .4871 .6435 .5135
glass .5218 .4862 .6221 .5290 .6479 .5849 .5877 .5372 .6427 .5208 .7461 .6421
hepatitis .8500 .8293 .9832 .8688 .8792 .8436 .9513 .8373 .8986 .7946 .9833 .8672
ionosphere .7445 .7378 .9313 .8797 .9186 .8889 .9018 .8764 .9062 .8750 .9477 .8886
iris .9318 .9133 .9814 .9600 .9696 .9666 .9711 .9600 .9696 .9466 .9800 .9600
monk-2 .8078 .8104 .7950 .7923 .8071 .8082 .8112 .8038 .8127 .7895 .8457 .8237
newthyroid .9359 .9352 .9798 .9634 .9498 .9448 .9741 .9725 .9695 .9681 .9757 .9629
sonar .7265 .7017 .9257 .7641 .7120 .6929 .9219 .7839 .8360 .7437 .9412 .7982
wine .9687 .9495 1.000 .9663 .9825 .9659 .9918 .9826 .9762 .9432 .9912 .9704
movement libras .6358 .5946 .8176 .7575 .7777 .6764 .8803 .7852 .8717 .7749 .9420 .8373
pima .7337 .7279 .7717 .7604 .7565 .7382 .6720 .6641 .7521 .7461 .7322 .7253
vehicle .4545 .4491 .7998 .7797 .6066 .5824 .7429 .7219 .6537 .6179 .7558 .7244
vowel .5367 .5070 .6689 .6383 .6087 .5717 .7272 .6868 .5732 .5333 .7690 .7292
wdbc .9388 .9367 .9794 .9649 .9548 .9385 .9796 .9736 .9703 .9665 .9810 .9701
wisconsin .9648 .9648 .9681 .9662 .9586 .9502 .9655 .9603 .9515 .9486 .9541 .9487
banana .5769 .5737 .5571 .5558 .6417 .6359 .5846 .5859 .7516 .7573 .7828 .7766
digits .9066 .8981 .8047 .8083 .9521 .9415 .8664 .8586 .9723 .9644 .8893 .8554
letter .5707 .5341 .7114 .6868 .5895 .5282 .7251 .6902 .6601 .5714 .7825 .7301
magic .7712 .7693 .7790 .7751 .7786 .7745 .7947 .7861 .7600 .7509 .7820 .7751
optdigits .9173 .9104 .8018 .7978 .9479 .9352 .8542 .8185 .9675 .9609 .8923 .8641
page-blocks .8133 .8165 .9636 .9576 .8219 .8221 .9090 .9071 .8680 .8696 .8966 .8953
phoneme .7417 .7399 .7587 .7538 .7683 .7667 .7084 .7159 .7207 .7149 .7091 .7048
ring .7780 .7723 .7819 .7784 .8002 .7601 .7197 .7012 .8160 .7750 .6844 .6636
satimage .7868 .7844 .8478 .8255 .8052 .7921 .8342 .8123 .8244 .7844 .8362 .8007
segment .8460 .8367 .9437 .9037 .8596 .8452 .9203 .8976 .8581 .8030 .9242 .8874
spambase .8874 .8827 .9584 .9154 .8816 .8763 .9400 .9241 .8985 .8893 .9335 .9112
texture .7445 .7372 .9912 .9781 .8586 .8500 .9694 .9581 .9079 .8900 .9759 .9654
thyroid .4532 .4394 .8163 .8082 .5724 .5558 .6875 .6922 .5959 .5630 .7469 .7358
titanic .7540 .7459 .7825 .7854 .6746 .6516 .5624 .6550 .5630 .6824 .7279 .7350
twonorm .9807 .9824 .9854 .9797 .9799 .9723 .9847 .9790 .9787 .9743 .9855 .9777
winequality-red .3519 .3371 .4535 .4359 .4067 .3838 .4031 .3870 .3940 .3582 .4024 .3738

AVG RANKING 4.941 4.441 2.382 2.500 4.117 4.000 3.411 2.911 3.764 4.235 2.382 2.911
AVG SCORE .7468 .7369 .8233 .7958 .7770 .7538 .8014 .7793 .7978 .7647 .8344 .7984

Table 4: Results of the experiments with NCM and NCMC.
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EUC KPCA KDA KANMM KDMLMJ KLMNN
Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl.

appendicitis .8428 .8428 .8407 .8355 .8428 .8438 .8481 .8491 .8502 .8679 .8564 .8543 .8543 .8523 .8763 .8889 .8491 .8397 .8407 .8575 .8805 .8355 .8397 .8355 .8523 1.000
balance .8049 .8217 .7770 .7923 .8136 .8288 .4547 .6756 .6279 .7497 .8838 .7764 .7980 .8224 .8462 .8327 .8298 .9509 .9696 .9374 .9491 .8202 .8426 .9079 .8865 .9852
bupa .6231 .6231 .6235 .6222 .6231 .6560 .5623 .5677 .5758 .5526 .5665 .5903 .5890 .5832 .5639 .5735 .6586 .6254 .6457 .6247 .7075 .6437 .6547 .6627 .6721 .9987
cleveland .5570 .5570 .5537 .5552 .5570 .5417 .5301 .5424 .5480 .5585 .5394 .5664 .5705 .5698 .5559 .5435 .5615 .5514 .5544 .5473 .5499 .5536 .5862 .6389 .6753 .9943
glass .6759 .6759 .6801 .6801 .6759 .6931 .6376 .6723 .6459 .6474 .6661 .6884 .6853 .6874 .6724 .6848 .6977 .6957 .7024 .6702 .7342 .6790 .7200 .7289 .7372 .9890
hepatitis .8236 .8236 .8083 .8111 .8236 .8403 .8318 .8416 .8471 .8181 .8111 .8695 .8709 .8653 .8363 .8306 .8834 .8708 .9179 .8708 .9208 .9777 1.000 1.000 1.000 1.000
ionosphere .8569 .8569 .8518 .8493 .8569 .8882 .6986 .6749 .6860 .7641 .7429 .8512 .8518 .8502 .9259 .9449 .8752 .8714 .8774 .8819 .9398 .8695 .9670 .9692 .9838 1.000
iris .9533 .9533 .9540 .9548 .9533 .9518 .8555 .9429 .9488 .9562 .9362 .9459 .9503 .9518 .9451 .9466 .9592 .9503 .9555 .9474 .9592 .9651 .9681 .9659 .9681 1.000
monk-2 .9578 .9503 .9603 .9580 .9480 .9511 .7047 .7119 .6995 .8320 .8459 .6877 .6365 .6252 .8996 .9964 .9709 .9763 .9863 .9588 .9938 .9789 .9873 .9920 .9989 1.000
newthyroid .9421 .9421 .9395 .9385 .9421 .9488 .9581 .9576 .9571 .9638 .9612 .9390 .9400 .9410 .9617 .9643 .9441 .9478 .9421 .9503 .9612 .9690 .9700 .9731 .9741 1.000
sonar .8317 .8317 .8365 .8370 .8317 .8392 .6261 .6287 .6410 .6057 .6832 .7499 .7516 .7521 .8263 .8450 .9076 .8696 .8637 .8691 .9332 .9706 1.000 1.000 1.000 1.000
wine .9606 .9606 .9625 .9606 .9606 .9669 .9269 .9169 .9200 .9644 .9694 .9325 .9332 .9325 .9844 .9825 .9825 .9793 .9831 .9819 .9956 .9993 1.000 1.000 1.000 1.000
movement libras .7972 .7972 .7866 .7805 .7972 .7775 .3322 .4953 .4980 .7419 .7544 .4684 .4684 .4689 .7195 .7376 .8590 .8118 .8272 .8124 .8450 .7945 .8776 .8924 .9246 1.000
pima .7372 .7372 .7361 .7377 .7372 .7181 .6820 .6753 .6653 .6535 .6650 .7170 .7144 .7141 .7164 .7076 .7359 .7381 .7460 .7455 .7628 .7378 .7453 .7397 .7505 .9968
banana .8543 .8546 .8549 .8562 .8545 .8536 .6730 .6622 .6672 .7037 .6493 .8593 .8603 .8624 .7854 .8167 .8554 .8545 .8551 .8423 .7643 .8546 .8546 .8547 .8540 .9801
optdigits .9756 .9756 .9761 .9753 .9756 .9664 .9186 .9190 .9198 .9434 .9386 .9379 .9387 .9394 .9558 .9543 .9767 .9790 .9813 .9791 .9857 .9905 .9999 .9997 .9998 1.000
phoneme .7957 .7957 .7940 .7935 .7957 .7962 .6960 .7019 .6929 .7112 .7271 .7727 .7726 .7732 .7735 .7880 .7959 .7940 .7945 .7898 .7858 .8021 .7963 .7850 .7994 .9829
satimage .8585 .8585 .8583 .8594 .8585 .8641 .8104 .8114 .8097 .8422 .8452 .8188 .8186 .8190 .8535 .8601 .8707 .8623 .8622 .8590 .8680 .8623 .8682 .8682 .8803 .9935
segment .8970 .8970 .8972 .8968 .8970 .9004 .8360 .8278 .8276 .8187 .8737 .8309 .8300 .8300 .8323 .8723 .9049 .8965 .8994 .8879 .9343 .9244 .9383 .9405 .9415 .9985
spambase .8500 .8500 .8500 .8504 .8500 .8328 .8490 .8323 .8313 .7263 .7500 .8777 .8775 .8777 .8635 .8988 .8642 .8850 .8828 .8830 .9014 .9369 .9495 .9459 .9497 .9990
twonorm .9609 .9609 .9636 .9648 .9609 .9531 .9765 .9758 .9758 .9765 .9756 .9798 .9800 .9804 .9763 .9751 .9616 .9642 .9624 .9672 .9810 .9773 .9847 .9800 .9861 .9915

AVG RANKING 15.45 15.26 15.52 15.95 15.47 14.14 22.19 21.64 21.50 18.95 19.47 17.14 16.61 16.30 15.52 13.66 9.690 11.71 9.880 12.33 7.023 9.476 5.380 5.833 3.619 1.214
AVG SCORE .8360 .8365 .8336 .8338 .8360 .8387 .7337 .7563 .7541 .7808 .7924 .7959 .7949 .7952 .8271 .8402 .8545 .8530 .8595 .8506 .8740 .8639 .8833 .8895 .8969 .9957

Table 5: Results of kernel experiments on the training set.
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EUC KPCA KDA KANMM KDMLMJ KLMNN
Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl. Lin. Poly-2 Poly-3 RBF Lapl.

appendicitis .8339 .8339 .8339 .8248 .8339 .8546 .8613 .8813 .8813 .8713 .8622 .8646 .8446 .8446 .8813 .8904 .8339 .8248 .8339 .8339 .8248 .8322 .8248 .8331 .8057 .8422
balance .8082 .8383 .7823 .8032 .8428 .8336 .4597 .6699 .6150 .7407 .8899 .7738 .8058 .8382 .8559 .8320 .8144 .9582 .9711 .9374 .9519 .8222 .8367 .9118 .8736 .8464
bupa .6546 .6546 .6661 .6662 .6546 .6862 .5620 .5191 .5566 .5244 .5389 .5963 .6022 .5908 .6199 .5794 .6777 .6375 .6371 .6310 .6924 .6574 .6402 .6516 .6632 .6467
cleveland .5468 .5468 .5432 .5535 .5468 .5528 .5541 .5449 .5485 .5860 .5474 .5689 .5653 .5685 .5657 .5623 .5605 .5682 .5774 .5674 .5688 .5736 .5744 .5628 .5184 .5325
glass .7015 .7015 .7102 .7102 .7015 .7117 .5971 .6708 .6543 .6582 .6630 .6777 .6677 .6677 .7026 .6890 .7020 .6910 .6910 .6715 .7351 .6907 .6911 .6827 .6845 .7334
hepatitis .8325 .8325 .8343 .8343 .8325 .8436 .8123 .8140 .8265 .8325 .8436 .8732 .8732 .8732 .8575 .8575 .8894 .8672 .8547 .8547 .8644 .8408 .8672 .8404 .8672 .8845
ionosphere .8550 .8550 .8520 .8491 .8550 .8885 .7119 .6695 .6977 .7638 .7598 .8517 .8489 .8461 .9258 .9457 .8634 .8607 .8606 .8666 .9316 .8463 .9081 .8910 .8969 .9396
iris .9533 .9533 .9533 .9533 .9533 .9533 .8800 .9533 .9533 .9800 .9333 .9600 .9600 .9533 .9533 .9466 .9600 .9600 .9533 .9533 .9533 .9533 .9533 .9600 .9466 .9266
monk-2 .9655 .9539 .9677 .9655 .9634 .9585 .7294 .7203 .6880 .8176 .8385 .6877 .6529 .6435 .9213 .9930 .9724 .9699 .9862 .9654 .9908 .9817 .9863 .9817 .9863 1.000
newthyroid .9538 .9538 .9448 .9448 .9538 .9493 .9538 .9538 .9538 .9586 .9491 .9396 .9396 .9396 .9580 .9627 .9493 .9493 .9448 .9491 .9489 .9584 .9632 .9679 .9632 .9625
sonar .8370 .8370 .8515 .8515 .8370 .8560 .5812 .6540 .6431 .5948 .6872 .7451 .7451 .7451 .8225 .8267 .8461 .8556 .8560 .8651 .8753 .7653 .8701 .8408 .8704 .8316
wine .9606 .9606 .9606 .9606 .9606 .9613 .9214 .9047 .9158 .9367 .9603 .9262 .9318 .9318 .9888 .9835 .9606 .9780 .9724 .9777 .9780 .9888 .9830 .9666 .9888 .9777
movement libras .8139 .8139 .8070 .7948 .8139 .8059 .3715 .5209 .5187 .7631 .7600 .4969 .5006 .4982 .7615 .7566 .8718 .8251 .8406 .8219 .8234 .8106 .8315 .8093 .8375 .7989
pima .7396 .7396 .7370 .7318 .7396 .7175 .6967 .6850 .7150 .6810 .6784 .7238 .7251 .7278 .7134 .7109 .7383 .7396 .7513 .7487 .7408 .7462 .7461 .7370 .7370 .7005
banana .8555 .8555 .8546 .8546 .8555 .8574 .6688 .6642 .6934 .7030 .6169 .8583 .8592 .8611 .7810 .8177 .8565 .8546 .8536 .8425 .7622 .8536 .8508 .8565 .8565 .8414
optdigits .9777 .9777 .9795 .9777 .9777 .9706 .9146 .9155 .9164 .9419 .9350 .9359 .9359 .9377 .9565 .9529 .9752 .9804 .9787 .9777 .9804 .9607 .9760 .9697 .9671 .9572
phoneme .7992 .7992 .7964 .7973 .7992 .8002 .6847 .7068 .7067 .7132 .7270 .7826 .7845 .7854 .7724 .7880 .8030 .8029 .7964 .7918 .7845 .8047 .8001 .7854 .7991 .7835
satimage .8564 .8564 .8564 .8580 .8564 .8612 .8053 .8138 .8122 .8364 .8496 .8193 .8185 .8170 .8535 .8589 .8689 .8589 .8580 .8527 .8559 .8473 .8565 .8487 .8425 .8558
segment .9020 .9020 .9020 .9000 .9020 .9000 .8404 .8363 .8323 .8112 .8625 .8346 .8346 .8326 .8227 .8687 .9098 .8768 .8840 .8738 .9183 .9153 .9241 .9224 .9285 .9517
spambase .8654 .8654 .8676 .8676 .8632 .8110 .8372 .8348 .8282 .7151 .7303 .8807 .8807 .8807 .8567 .8849 .8546 .8740 .8784 .8826 .8827 .8914 .9027 .8981 .9049 .8999
twonorm .9595 .9595 .9649 .9642 .9595 .9567 .9804 .9777 .9770 .9797 .9730 .9810 .9797 .9790 .9743 .9682 .9561 .9635 .9574 .9675 .9702 .9689 .9702 .9682 .9655 .9635

AVG RANKING 12.97 12.83 13.21 13.57 12.76 11.73 21.42 20.73 20.64 17.92 19.21 15.57 15.95 16.16 13.40 12.23 9.738 9.642 10.21 11.61 8.404 11.02 7.880 10.38 10.02 11.69
AVG SCORE .8415 .8424 .8412 .8411 .8430 .8443 .7345 .7577 .7588 .7814 .7908 .7990 .7979 .7982 .8354 .8417 .8507 .8522 .8541 .8492 .8588 .8433 .8551 .8517 .8525 .8512

Table 6: Results of kernel experiments on the test set.
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Suárez, Garćıa and Herrera

PCA LDA ANMM DMLMJ NCA LMNN

1 .5016 .9011 .6965 .7826 .9214 .7237
2 .5891 - .7670 .8050 .9807 .8782
3 .7729 - .8359 .8333 .9770 .9513
5 .8215 - .8904 .9033 .9759 .9914
10 .8600 - .8958 .9652 .9764 .9994
20 .8541 - .8872 .9583 .9668 1.000
30 .8456 - .8627 .9508 .9706 1.000
40 .8365 - .8424 .9460 .9839 1.000
50 .8312 - .8370 .9263 .9850 1.000
Max. Dimension .8317 - .8317 .9097 .9823 1.000
N. Classes - 1 .5016 .9011 .6965 .7826 .9214 .7237

PCA LDA ANMM DMLMJ NCA LMNN

1 .5619 .7782 .6770 .7256 .8073 .6640
2 .6293 - .7541 .7113 .8077 .7593
3 .7641 - .8395 .7741 .8265 .8077
5 .8075 - .8263 .8182 .8220 .8408
10 .8699 - .8751 .8651 .8270 .8654
20 .8601 - .8749 .8844 .8699 .8703
30 .8610 - .8649 .8749 .8653 .8754
40 .8465 - .8610 .8697 .8792 .8613
50 .8565 - .8515 .8654 .8558 .8706
Max. Dimension .8370 - .8370 .8361 .8703 .8706
N. Classes - 1 .5619 .7782 .6770 .7256 .8073 .6640

Table 7: Results of dimensionality reduction experiments on sonar with 3-NN (train - test)

PCA LDA ANMM DMLMJ NCA LMNN

1 .1938 .3339 .2414 .2720 .3360 .2547
2 .2813 .5362 .4597 .4720 .6638 .5416
3 .5232 .6143 .6435 .6684 .7195 .6900
5 .6873 .7211 .7473 .7918 .8188 .8156
10 .7831 .8661 .8053 .8857 .8383 .8485
20 .7978 - .7972 .8705 .8442 .8490
30 .7981 - .7978 .8652 .8438 .8514
40 .7972 - .7975 .8594 .8469 .8526
50 .7972 - .7972 .8538 .8431 .8498
Max. Dimension .7972 - .7972 .8460 .8516 .8490
N. Classes - 1 .7932 .8685 .8061 .8901 .8398 .8438

PCA LDA ANMM DMLMJ NCA LMNN

1 .1747 .3169 .2675 .2694 .2606 .2673
2 .2574 .4553 .4800 .4476 .6181 .5251
3 .5483 .4978 .6680 .6684 .6920 .6499
5 .7177 .5938 .7763 .7774 .7655 .8012
10 .8007 .7001 .8119 .8711 .8017 .8220
20 .8139 - .8106 .8829 .8143 .8333
30 .8139 - .8139 .8696 .8191 .8133
40 .8139 - .8139 .8605 .8323 .8233
50 .8139 - .8139 .8627 .8310 .8255
Max. Dimension .8139 - .8139 .8649 .8319 .8133
N. Classes - 1 .8185 .6642 .8137 .8811 .8274 .8211

Table 8: Results of dimensionality reduction experiments on movement libras with 3-NN (train -
test)

PCA LDA ANMM DMLMJ NCA LMNN

1 .8369 .9215 .8567 .6995 .9420 .9340
2 .8316 - .8869 .7724 .9420 .9386
3 .8487 - .8973 .8886 .9388 .9335
5 .8784 - .9079 .9009 .9415 .9335
10 .8681 - .9222 .9195 .9400 .9318
20 .8700 - .9067 .9217 .9400 .9297
30 .8586 - .8787 .8867 .9403 .9328
40 .8572 - .8654 .8727 .9369 .9318
50 .8536 - .8560 .8596 .9374 .9299
Max. Dimension .8500 - .8500 .8635 .9391 .9285
N. Classes - 1 .8369 .9215 .8567 .6995 .9420 .9340

PCA LDA ANMM DMLMJ NCA LMNN

1 .8106 .8871 .8587 .6588 .9044 .8872
2 .8261 - .8850 .7173 .9197 .8958
3 .8543 - .9090 .8807 .9152 .9068
5 .8782 - .9049 .8700 .9111 .9069
10 .8826 - .9198 .9044 .9153 .9113
20 .8695 - .9048 .8937 .9155 .9005
30 .8502 - .8675 .8851 .9154 .9027
40 .8547 - .8567 .8611 .9111 .9005
50 .8655 - .8633 .8569 .9133 .9070
Max. Dimension .8654 - .8654 .8525 .9154 .9092
N. Classes - 1 .8106 .8871 .8587 .6588 .9044 .8872

Table 9: Results of dimensionality reduction experiments on spambase with 3-NN (train - test)

6.3 Analysis of Results

On the results obtained in the first experiment, we can clearly see that NCA is the one that
has obtained the best results. This is partly due to the fact that the algorithms have been
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evaluated with nearest neighbors classifiers, and NCA was specifically designed to improve
this classifier. NCA got the first place in most of the validations over the training set,
showing its ability to fit to the data, but it has also obtained clear victories in many of the
datasets over the test set, thus also demonstrating a great capacity for generalization.

We can also see that DMLMJ and LMNN algorithms stand out, although at a con-
siderable distance from NCA. These algorithms were also oriented to nearest neighbors
classification, which justifies these good results. About LMNN we also conjecture that it
has a slow convergence with the projected gradient method, and it could have achieved
better results with a greater number of iterations. In fact, in the analysis of dimensionality
reduction experiments we will see a much better performance of LMNN with the stochastic
gradient descent method. LSI is another algorithm capable of obtaining very good results
on certain datasets, but it is penalized by many others, where it is not able to optimize
enough, even not converging in several datasets.

ITML and MCML are two algorithms that, despite getting the best results in a very
small number of cases, they get decent results in most datasets, resulting in quite a stable
performance. ITML does not learn too much from the characteristics of the training set,
but is able to generalize what has been learned in a quite effective way, being possibly the
algorithm that loses the least accuracy over the test set, with respect to the training set.
On the other hand, MCML has more learning capacity, even showing a slight overfitting,
as its results are worse than those of many algorithms on the test set.

Another algorithm in which we can see overfitting, perhaps more clearly, is LDA. This
algorithm is capable of getting very good results on the training set, surpassing most of
the algorithms, but it gets noticeably worse when evaluated on the test dataset. Recall
that LDA is able to learn only a maximum dimension equal to the number of classes of
the dataset minus one. This may be causing the loss of important information on many
datasets by the projection it learns.

Finally, although DML-eig and LDML are able to get better results than euclidean
distance on the training sets, on several datasets they have obtained quite low quality
results. On many of the test datasets, they are surpassed by the euclidean distance.

If we analyze the results of the centroid-based classifiers, we can easily observe that in
the vast majority of cases the classifier has worked much better after learning the distance
with its associated learning algorithm, than using the euclidean distance. It can also be
observed that the results are subject to great variability, depending on the number of
centroids chosen. This shows that the choice of an adequate number of centroids, that
adapts well to the disposition of the different classes, is fundamental to achieve a successful
learning with these algorithms.

Focusing now on the kernel-based algorithms, it is interesting to note how KLMNN with
laplacian kernel is able to adjust as much as possible to the data, getting a 100 % success
rate on most of the datasets. This success rate is not transferred, in general, to the test
data, showing that this algorithm overfits with laplacian kernel. We can also observe that
the best results are distributed in a varied way among the different evaluated options. The
choice of a suitable kernel that fits well with the disposition of the data is decisive for the
performance of kernel-based algorithms.

To conclude our analysis, dimensionality experiments allow us to observe that the best
results are not always obtained when considering the maximum dimension. This may be
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due to the fact that the algorithms are able to denoise the data, ensuring that the classifier
used later does not overfit. We also see that we cannot reduce the dimension as much as we
want, because at some point we start losing information, which happens in many cases with
LDA, which is its great limitation. In general, we can observe that all algorithms improve
their results by reducing dimensionality until a certain value, although the best results are
provided by LMNN, DMLMJ and NCA. The results obtained by LMNN open the possi-
bility of using this algorithm with stochastic gradient descent, instead of the semidefinite
programming algorithm used in the first experiment, since the results it provides are quite
good. Although these algorithms have obtained better results, the use of ANMM and LDA
(as long as the dimension allows it) is important for the estimation of an adequate dimen-
sion, since they are much more efficient than the first ones. As for PCA, it gets the worst
results in low dimensions, probably due to not considering the information of the labels.

To complete the verbal analysis carried out, we have developed a series of Bayesian
statistical tests to assess the extent to which the performance of the different algorithms
analyzed outperforms the others. To do this, we have elaborated several pairwise Bayesian
sign tests (Benavoli et al., 2017). In these tests, we will consider the differences between
the obtained scores of two algorithms, assuming that their prior distribution is a Dirichlet
Process (Benavoli et al., 2014), defined by a prior strength s = 1 and a prior pseudo-
observation z0 = 0. After considering the score observations obtained for each dataset, we
obtain a posterior distribution which gives us the probabilities that one algorithm outper-
forms the other. We also introduce a rope region, in which we consider the algorithms to
have an equivalent performance. We have designated the rope region as the one where the
score differences are in the interval [−0.01, 0.01]. In summary, from the posterior distri-
bution we obtain three probabilities: the probability that the first algorithm outperforms
the second, the probability that the second algorithm outperforms the first one, and the
probability that both algorithms are equivalent. These probabilities can be visualized in a
simplex plot for a sample of the posterior distribution, in which a greater tendency of the
points towards one of the regions will represent a greater probability.

To do the Bayesian sign tests, we have used the R package rNPBST (Carrasco et al.,
2017). In Figure 16 we pairwise compare some of the algorithms that seem to have a better
performance in experiment 1 with 3-NN (NCA, DMLMJ and LMNN) with the results of the
3-NN classifier for euclidean distance. In the comparison between euclidean distance and
NCA, we can clearly see that the points are concentrated close to the [NCA, rope] segment.
This shows us that euclidean distance is unlikely to outperform NCA, and there is also a
high probability for NCA to outperform euclidean distance, since a big concentration of
points is in the NCA region. We obtain similar conclusions for DMLMJ against euclidean
distance, although in this case, despite the fact that euclidean distance is still unlikely
to win, there is a greater concentration of points in the rope region. In the comparison
between LMNN and euclidean distance, we see a more centered concentration of points,
but slightly weighted towards the LMNN region. In the comparisons between the distance
metric learning algorithms we observe the points weighted to the [NCA, rope] segment,
concluding the difficulty of outperforming NCA, and between DMLMJ and LMNN we can
see a pretty level playing field, but slightly biased to the DMLMJ algorithm.

The outperforming of euclidean distance is even more clear in the results of experiment
2. For these algorithms, we can clearly observe the points concentrated in the region
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corresponding to the nearest centroid metric learning algorithm, as shown in Figure 17. We
have elaborated more pairwise Bayesian sign tests for the rest of algorithms in experiment
1. The results of these tests are also available on the pyDML-Stats website17.

7. Conclusions

In this tutorial we have studied the concept of distance metric learning, showing what it is,
what its applications are, how to design its algorithms, and the theoretical foundations of
this discipline. We have also studied some of the most popular algorithms in this field, also
with their theoretical foundations, and explaining different resolution techniques.

In order to understand the theoretical foundations of distance metric learning and its
algorithms, it has been necessary to delve into three different mathematical theories: convex
analysis, matrix analysis and information theory. Convex analysis has made it possible to
present many of the optimization problems studied in the algorithms, along with some
methods for solving them. Matrix analysis has provided many useful tools to understand
this discipline, from how to parameterize Mahalanobis distances, to the optimization with
eigenvectors, going through the most basic algorithm of semidefinite programming. Finally,
information theory has motivated several of the algorithms we have studied.

As for the developed software, we have integrated the distance metric learning algorithms
in a library for the Python language, with additional functionalities such as classifiers,
visualization or parameter estimation.

In addition, several experiments have been developed that have allowed to evaluate
the performance of the algorithms in the softwate. The results of these experiments have
allowed us to observe how algorithms such as LMNN, DMLMJ, and specially NCA can
considerably improve the nearest neighbors classification, and how centroid-based distance
learning algorithms also improve their corresponding classifiers. We have also seen the
wide variety of possibilities offered by kernel-based algorithms, and the advantages that an
appropiate reduction of the dimensionality of the datasets can offer.

8. Future Work

The work carried out in this paper has paved the way for future research, both in the study
of distance metric learning and in the software developed. Some of these possibilites are:

• Other approaches for the concept of distance. Most of the current distance
metric learning theory focus on Mahalanobis distances. However, some articles open
a door to learning about other possible distances, such as local Mahalanobis distances,
that lead to a multi-metric learning (see Weinberger and Saul, 2009). By developing
new approaches, we will have a greater variety of distances to learn, and thus have a
greater chance of success.

• Kernelization of existing algorithms. The kernelization of distance metric learn-
ing algorithms can be extended to other algorithms besides those presented. The
search for a suitable parametrization and a representer theorem that allows the kernel
trick to be applied is another possible task to carry out.
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Figure 16: Bayesian sign results for NCA, DMLMJ, LMNN and euclidean distance with 3-NN.
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Figure 17: Bayesian sign test results for the comparison between scores of nearest centroid classifiers
with their corresponding distance metric learning algorithm against the same classifier
with euclidean distance. The results are shown for nearest class mean classifier (left),
nearest class with 2 centroids (center) and nearest class with 3 centroids (right).

77
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• Other optimization mechanisms. The algorithms studied optimize their objective
functions by applying gradient descent method, regardless of whether the objective
function is convex. The use of other optimization techniques, such as metaheuristics,
can be useful to improve those algorithms that do not have convex objective functions.
The evolutionary approach to distance metric learning has been explored recently in
several problems (Kalintha et al., 2017; Ali et al., 2018).

• High dimensionality datasets. Distance metric learning is of great interest in
many real problems in high dimensionality, such as face recognition, where it is very
useful to be able to measure the similarity between different images (Moutafis et al.,
2017). When we work with datasets of even greater dimensionality, the treatment of
distances can become too expensive, since it would be necessary to store matrices of
very large dimensions. In these situations it may be of interest to combine distance
metric learning with feature selection techniques prepared for very high dimensional
data (Tan et al., 2014).

• Big Data solutions. The problem of learning when the amount of data we have is
huge and heterogeneous is one of the challenges of machine learning nowadays (Wu
et al., 2014). In the case of the distance metric learning algorithms, although many
of them, specially those based on gradient descent, are quite slow and do not scale
well with the number of samples, they can be largely parallelized in both matrix com-
putations and gradient descent batches. In this way, distance metric learning can
be extended to handle Big Data by developing specialized algorithms and integrat-
ing them with frameworks such as Spark (Meng et al., 2016) and Cloud Computing
architectures (Hashem et al., 2015).

• Singular problems. In this paper, we have focused on distance metric learning
for usual problems, like standard classification and dimensionality reduction, and
we have also mentioned its applications for clustering and semi-supervised learning.
However, distance metric learning can be useful in a wide variety of learning tasks
(Charte et al., 2019), and can be carried out either by designing new algorithms or by
adapting known algorithms from standard problems to these tasks. In recent years,
several distance metric learning proposals have been made in problems like regression
(Nguyen et al., 2016), multi-dimensional classification (Ma and Chen, 2018), ordinal
classification (Nguyen et al., 2018) and multi-output learning (Liu et al., 2018).

• Hybridization with other learning techniques. Over the years, some distance-
based algorithms, or some of their ideas or foundations, have been combined with
other algorithms in order to improve their learning capabilities in certain problems.
For example, the concept of nearest-neighbors has been combined with classifiers such
as Naive-Bayes, obtaining a Naive-Bayes classifier whose feature distributions are de-
termined by the nearest neighbors of each class (Yang and Tian, 2012); with neural
networks, to find the best neural network architecture (Wang et al., 2017); with ran-
dom forests, by exploiting the relationship between voting points and potential nearest
neighbors (Lin and Jeon, 2006); with deep learning, to provide interpretability and
robustness to deep neural networks (Papernot and McDaniel, 2018); with ensemble
methods, like bootstrap (Steele, 2009; Hamamoto et al., 1997); with support vector
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machines, training them locally in neighborhoods (Zhang et al., 2006); or with rule-
learning algorithms, obtaining the so-called nested generalized exemplar algorithms
(Wettschereck and Dietterich, 1995). The distances used in these combinations of al-
gorithms can condition their performance, so designing appropiate distance learning
algorithms for each of these tasks can be helpful for achieving good results. Following
this topic, another option is to hybridize directly distance metric learning with other
techniques, like ensemble learning (Mu et al., 2013).
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Appendix A. Positive Semidefinite Matrices and Decomposition
Theorems.

In this appendix we will study several decomposition theorems involving positive semidef-
inite matrices, in order to prove Theorem 10. We will start with a characterization of
positive semidefinite matrices by decomposition, which will also allow us to introduce the
concept of square root. We will rely on several previous lemmas.

Lemma 30 Let A,B ∈ Md(R) be two commuting matrices, that is, AB = BA. Then,
Ap(B) = p(B)A, where p denotes any polynomial over matrices (that is, a expression of the
form p(C) = a0I + a1C + a2C

2 + · · ·+ anC
n, with a0, . . . , an ∈ R).

Proof Observe that

ABn = (AB)Bn−1 = B(AB)Bn−2 = · · · = Bn−1(AB) = BnA,

and Ap(B) = p(B)A is deduced by linearity.

Lemma 31 Let D ∈ Sd(R)+
0 be a diagonal matrix. Then, there is a polynomial over

matrices p so that p(D2) = D.

Proof SupposeD = diag(λ1, . . . , λd), with 0 ≤ λ1 ≤ · · · ≤ λd. Then, D2 = diag(λ2
1, . . . , λ

2
d).

We take p as an interpolation polynomial over the points (λ2
i , λi), for i = 1, . . . , d. If we

evaluate it on D2 we obtain

p(D2) = p(diag(λ2
1, . . . , λ

2
d)) = diag(p(λ2

1), . . . , p(λ2
d)) = diag(λ1, . . . , λd) = D.

Theorem 32 Let M ∈Md(R). Then,

1. M ∈ Sd(R)+
0 if, and only if, there is L ∈Md(R) so that M = LTL.

2. If M ∈ Sd(R)+
0 , there is a single matrix N ∈ Sd(R)+

0 with N2 = M . In addition,
M ∈ Sd(R)+ ⇐⇒ N ∈ Sd(R)+.

Proof , First we will see that LTL is a positive semidefinite, for any L ∈ Md(R). Indeed,
given x ∈ Rd,

xTLTLx = (Lx)T (Lx) = ‖Lx‖22 ≥ 0.

We will prove the second implication of the first statement finding directly the matrix N
of the second statement. Consider the spectral decomposition M = UDUT , with U ∈ Od(R)
and D = diag(λ1, . . . , λd), with 0 ≤ λ1 ≤ . . . λd the eigenvalues of M . We define D1/2 =
diag(

√
λ1, . . . ,

√
λd) and construct the matrix N = UD1/2UT . N is positive semidefinite,

because its eigenvalues are those of D1/2, which are all positive, and besides,

N2 = UD1/2UTUD1/2UT = UD1/2D1/2UT = UDUT = M.
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Furthermore, the strict positivity of the eigenvalues of M is equivalent to that of the eigen-
values of N , then M ∈Md(R)+ ⇐⇒ N ∈Md(R)+. Let us finally see that N is unique.

Suppose that we have N1, N2 ∈ Sd(R)+
0 with N2

1 = M = N2
2 . Observe that N1 and N2

must have the same eigenvalues, since they are necessarily the positive square roots of the
eigenvalues of M . Therefore, N1 and N2 are similar to a same diagonal matrix, that is,
there are matrices U, V ∈ Od(R) with N1 = UDUT and N2 = V DV T . From N2

1 = N2
2 we

have
UD2UT = V D2V T =⇒ V TUD2 = D2V TU,

so for W = V TU ∈ Od(R) we obtain that D2 and W commute. Combining Lemmas 31 and
30, we obtain that D and W also commute. Therefore,

WD = DW =⇒ V TUD = DV TU =⇒ UDUT = V DV T =⇒ N1 = N2,

obtaining the uniqueness.

As we had anticipated, this theorem motivates the definition of square roots for positive
semidefinite matrices.

Definition 33 Let M ∈ Sd(R)+
0 . We define the square root of M as the unique matrix

N ∈ Sd(R)+
0 with N2 = M . We denote it as N = M1/2.

We can also extend other concepts defined over the non-negative real numbers to the
positive semidefinite matrices. For example, the square root allows us to define the concept
of module for any matrix.

Definition 34 Let A ∈Md×d′(R). We define the module of A as

|A| = (ATA)1/2 ∈ Sd′(R)+
0 .

With the module we can state a polar decomposition theorem, which shows a decom-
position that can be seen as an extension of the polar form for complex numbers.

Theorem 35 (Polar decomposition) Let A ∈ Md×d′(R), with d′ ≤ d. Then, there is a
matrix U ∈ Md×d′(R) with UTU = I, so that A = U |A|. This decomposition is called the
polar decomposition of A, and it is not necessarily unique, unless A is square and invertible.

Proof First, observe that, given x ∈ Rd′ , we have

‖Ax‖22 = (Ax)T (Ax) = xTATAx = xT |A|2x = xT |A||A|x = (|A|x)T (|A|x) = ‖|A|x‖22.

This means that A and |A| have the same effect on the length of any vector. As an immediate
consequence, we can observe that kerA = ker |A|, since

x ∈ kerA ⇐⇒ Ax = 0 ⇐⇒ ‖Ax‖ = 0 = ‖|A|x‖ ⇐⇒ |A|x = 0 ⇐⇒ x ∈ ker |A|.

As d′ = dim kerA+ dim imA = dim ker |A|+ dim im |A|, we also conclude that dim imA =
dim im |A|, and then r(A) = r(|A|). We will denote this rank as r ≤ d.
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|A| is positive semidefinite, so there is an orthonormal basis {w1, . . . , wd′} ⊂ Rd′ consist-
ing of eigenvectors of |A|, with corresponding eigenvalues λ1, . . . , λd′ . We can assume that
λ1, . . . , λr > 0 and λr+1 = · · · = λd′ = 0, or equivalently, {wr+1, . . . , wd′} is an orthonormal
basis of ker |A| = kerA.

We consider the set of vectors {Aw1/λ1, . . . , Awr/λr}. Note that〈
1

λi
Awi,

1

λj
Awj

〉
=

1

λiλj
〈Awi, Awj〉 =

1

λiλj
wTi |A|2wj =

1

λiλj
wTi λ

2
jwj =

λj
λi
wTi wj ,

which equals 1 if i = j, and 0 otherwise, so this set is also orthonormal. In fact, this set is
an orthonormal basis of imA.

We extend the previous set to an orthonormal set of size d′ in Rd,{
1

λ1
Aw1, . . . ,

1

λr
Awr, vr+1, . . . , vd′

}
.

Finally, we construct the matrix V ∈Md×d′(R) by adding as columns the vectors in the
previous set, and the matrix W ∈ Md′(R) by adding as rows the vectors w1, . . . , wd′ . We
define U as U = VW ∈Md×d′(R). Observe that both V and W have orthonormal columns,
and then V TV = I = W TW , obtaining that UTU = I as well. We can also observe that
Wwi = ei, where {e1, . . . , ed′} is the canonical basis of Rd′ . Therefore, we obtain

Uwi =

{
1
λi
wi, 1 ≤ i ≤ r

vi, r < i ≤ d′
,

and finally,

U |A|wi =

{
λiUwi, 1 ≤ i ≤ r
0, r < i ≤ d′

=

{
Awi, 1 ≤ i ≤ r
0, r < i ≤ d′

= Awi,

where the last equality holds, since {wr+1, . . . , wd′} ⊂ kerA. So, we have the equality
A = U |A| on the basis {w1, . . . , wd′}, concluding the proof. The uniqueness of U when A
is square and invertible is due to the fact that |A| is also invertible in that case, and then
U = A|A|−1.

Remark 36 When A ∈ Md(R) is a square matrix, the polar decomposition can be stated
as A = U |A|, where U ∈ Od(R) is an orthogonal matrix.

We are now in a position to prove Theorem 10.

Theorem Let M ∈ Sd(R)+
0 . Then,

1. There is a matrix L ∈Md(R) so that M = LTL.

2. If K ∈Md(R) is any other matrix with M = KTK, then K = UL, where U ∈ Od(R)
(that is, L is unique up to isometries).
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Proof The first statement was proved in Theorem 32. Suppose then that L,K ∈ Md(R)
verify that M = LTL = KTK. Let L = V |L|,K = W |K|, with V,W ∈ Od(R), be polar
decompositions of L and K. Then, we have

LTL = KTK =⇒ |L|TV TV |L| = |K|TW TW |K|
=⇒ |L|T |L| = |K|T |K| =⇒ |L|2 = |K|2.

As |L| and |K| are positive semidefinite, they must be the only square root of |L|2 = |K|2,
that is, |L| = |K|. We call N = |L| = |K|. Returning to the polar decompositions of L and
K, it follows that

N = V TL = W TK =⇒ K = WV TL.

Therefore, taking U = WV T ∈ Od(R), we obtain the desired equality.

Appendix B. Matrix Optimization Problems.

In this appendix we will develop a matrix optimization theory in order to prove Theorems
11, 12 and 13. First, we will introduce the Rayleigh quotient, and we will see its relationship
with the eigenvalues and eigenvectors.

Definition 37 Let A ∈ Sd(R). We define the Rayleigh quotient associated with A as the
mapping ρA : Rd \ {0} → R given by

ρA(x) =
xTAx

xTx
=
〈Ax, x〉
‖x‖22

∀x ∈ Rd \ {0}.

If B ∈ Sd(R)+, we define the generalized Rayleigh quotient associated with A and B as
the mapping RA,B : Rd \ {0} → R given by

RA,B(x) =
xTAx

xTBx
=
〈Ax, x〉
‖x‖2B

∀x ∈ Rd \ {0}.

Throughout this section we will assume that A ∈ Sd(R) and B ∈ Sd(R)+ are fixed, and
we will refer to Rayleigh quotients as ρ = ρA and R = RA,B. A first observation about ρ
and R is that, for x ∈ Rd \ {0} and λ ∈ R∗, it is verified that

R(λx) =
(λx)TA(λx)

(λx)TB(λx)
=
λ2(xTAx)

λ2(xTBx)
= R(x).

Therefore, R takes all its values over the (d− 1)-dimensional unit sphere, that is, R(R \
{0}) = R(Sd−1) ⊂ R. Since R is continuous and the sphere is compact, it follows that R
achieves a maximum and a minimum in Rd \ {0}. The same follows with ρ. These maxima
and minima are closely related with the problems we want to analyze. We start studying
the extremes of ρ.

83
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Theorem 38 (Rayleigh-Ritz) Let λmin and λmax be the minimum and maximum eigen-
values of A, respectively. Then,

1. For every x ∈ Rd, λmin‖x‖2 ≤ xTAx ≤ λmax‖x‖2.

2. λmax = maxx∈Rd\{0}
xTAx
xT x

= max‖x‖2=1 x
TAx.

3. λmin = minx∈Rd\{0}
xTAx
xT x

= min‖x‖2=1 x
TAx.

Therefore, the maximum and minimum values of ρ are λmin and λmax, respectively. These
values are attained in the corresponding eigenvectors.

Proof Let A = UDUT , with U ∈ Od(R) and D = diag(λ1, . . . , λd), where λ1 ≤ · · · ≤ λd,
be a spectral decomposition of A. Let x ∈ Rd \ {0} and we take y = UTx. Then,

ρ(x) =
xTAx

xTx
=
xTUDUTx

xTx
=
yTUTUDUTUy

yTUTUy
=
yTDy

‖y‖22
=

d∑
i=1

λiy
2
i

‖λ‖22
. (19)

In addition, it is clear that

λ1‖y‖22 = λ1

d∑
i=1

y2
i ≤

d∑
i=1

λiy
2
i ≤ λd

d∑
i=1

y2
i = λd‖y‖22.

Applying this inequality over Eq. 19, it follows that

λ1 ≤ ρ(x) ≤ λd.

Furthermore, if u1 and ud are the corresponding eigenvectors of λ1 and λd, we get

ρ(u1) =
uT1 Au1

uT1 u1
=
λ1u

T
1 u1

uT1 u1
= λ1, ρ(ud) =

uTdAud

uTd ud
=
λdu

T
d ud

uTd ud
= λd.

Therefore, the equality is attained, and the three statements of the theorem follow from
this equality.

Rayleigh-Ritz theorem shows us that ρ(Rd \ {0}) = [λmin, λmax], obtaining the extreme
values in the corresponding eigenvectors. However, these are not the only eigenvalues that
can act as an optimal for a Rayleigh quotient. If we restrict ourselves to lower dimensional
spaces, we can obtain any eigenvalue of A as an optimal for the Rayleigh quotient, as we
will see below.

Theorem 39 (Courant-Fischer) Let λ1 ≤ · · · ≤ λd the eigenvectors of A, and we denote
by Sk a vector subspace of Rd of dimension k. Then, for each k ∈ {1, . . . , d}, we get

λk = min
Sk⊂Rd

max
x∈Sk
‖x‖2=1

xTAx, (20)

λk = max
Sd−k+1⊂Rd

min
x∈Sd−k+1

‖x‖2=1

xTAx. (21)
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This result extends the Rayleigh-Ritz statement, and this theorem is proven by Horn
and Johnson (1990, chap. 4). There we can also find the proof of an important consequence
of Courant-Fischer theorem, usually known as the Cauchy’s interlace theorem.

Theorem 40 (Cauchy’s interlace) Suppose that λ1 ≤ · · · ≤ λd are the eigenvalues of A.
Let J ⊂ {1, . . . , d} be a set of cardinal |J | = d′, and let AJ ∈ Sd′(R) be the matrix given
by AJ = (Aij)i,j∈J , that is, the submatrix of A with the entries of A whose indices are in
J × J . Then, if τ1 ≤ · · · ≤ τd′ are the eigenvalues of AJ , for each k ∈ {1, . . . , d′},

λk ≤ τk ≤ λk+d−d′ .

The next result follows from Cauchy’s interlace theorem, and the inequality it states
will help us to solve our optimization problems.

Corollary 41 Let L ∈ Md′×d(R) with LLT = I. If µ1 ≥ · · · ≥ µd are the eigenvalues of
A and σ1 ≥ · · · ≥ σd′ are the eigenvalues of LALT (now we are considering eigenvalues in
decreasing order), then σk ≤ µk, for k = 1, . . . , d′.

Proof Since LLT = I, the rows of L are orthonormal eigenvectors. We can extend L to an
orthogonal matrix L̂ ∈ Od(R) by adding d− d′ orthonormal eigenvectors, and orthonormal
to the rows of L, in its rows. We have then that L̂AL̂T and A have the same eigenvalues,
and LALT is a submatrix of L̂AL̂T obtained by deleting the last d− d′ rows and columns.
The assertion now follows from Cauchy’s interlace Theorem 40, considering eigenvalues in
the opposite order.

We are now in a position to prove the theorems proposed in Section 2.2.3.

Theorem Let d′, d ∈ N, with d′ ≤ d. Let A ∈ Sd(R), and we consider the optimization
problem

max
L∈Md′×d(R)

tr
(
LALT

)
s.t.: LLT = I.

(22)

The problem attains a maximum if L =

— v1 —
. . .

— vd′ —

, where v1, . . . , vd′ are orthonor-

mal eigenvectors of A corresponding to its d′ largest eigenvalues. In addition, the maximum
value is the sum of the d′ largest eigenvalues of A.

Proof Let µ1 ≥ · · · ≥ µd the eigenvalues of A in decreasing order, and σ1 ≥ · · · ≥ σd′ the
eigenvalues of LALT . By Corollary 41, for any L ∈Md′×d(R) with LLT = I,

tr(LALT ) =

d′∑
i=1

σi ≤
d′∑
i=1

µi.
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In addition, when the rows of L are orthonormal eigenvectors v1, . . . , vd′ of A corresponding
to µ1, . . . , µd′ , we get LLT = I and tr(LALT ) =

∑d′

i=1 µi, thus equality holds for these
vectors.

Lemma 42 (Simultaneous diagonalization) Let A ∈ Sd(R) and B ∈ Sd(R)+. Then,
there is an invertible matrix P ∈ GLd(R) and a diagonal matrix D ∈Md(R) with P TAP =
D and P TBP = I.

Proof We consider the matrix C = B−1/2AB−1/2. C is symmetric, since A and B are
symmetric, thus there is a matrix U ∈ Od(R) so that UTCU is diagonal. We call D = UTCU
and we consider P = B−1/2U ∈ GLd(R). We get

P TAP = P TB1/2CB1/2P = (B−1/2U)TB1/2CB1/2(B−1/2U) = UTCU = D,

P TBP = (B−1/2U)TB(B−1/2U) = UTB−1/2BB−1/2U = UTU = I.

Theorem Let d′, d ∈ N, with d′ ≤ d. Let A ∈ Sd(R) and B ∈ Sd(R)+, and we consider
the optimization problem

max
L∈Md′×d(R)

tr
(
(LBLT )−1(LALT )

)
(23)

The problem attains a maximum if L =

— v1 —
. . .

— vd′ —

, where v1, . . . , vd′ are eigenvectors

of B−1A corresponding to its d′ largest eigenvalues.

Proof We denote U = LT ∈ Md×d′(R). If we take the matrix P from Lemma 42 and the
matrix V ∈Md×d′(R) with U = PV (it exists and it is unique, since P is regular), we have

tr
(
(LBLT )−1(LALT )

)
= tr

(
(UTBU)−1(UTAU)

)
= tr

(
(V TP TBPV )−1(V TP TAPV )

)
= tr((V TV )−1(V TDV )).

Therefore, maximizing Eq. 23 is equivalent to maximize with respect to V the expression
tr((V TV )−1(V TDV )), because the parameter change is bijective. Now we consider a polar
decomposition V = Q|V |, with Q ∈Md×d′(R) verifying QTQ = I. It follows that

tr((V TV )−1(V TDV )) = tr((|V |TQTQ|V |)−1(|V |TQTDQ|V |T ))

= tr(|V |−1|V |−T (|V |TQTDQ|V |))
= tr(|V |−1QTDQ|V |) = tr(QTDQ|V ||V |−1) = tr(QTDQ).

If we call W = QT , what we have obtained is that the maximization of Eq. 23 is equiva-
lent to maximizing in W tr(WDW T ), subject to WW T = I, thus obtaining the optimization
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problem given in Eq. 22. We can suppose the diagonal of D ordered in descending order,
and then a matrix W that solves the optimization problem can be obtained adding as rows
the vectors e1, . . . , ed′ of the canonical basis of Rd. Then, Q has contains the same vectors,
but added by columns. Observe that the quotient trace T (X) = tr

(
(XTBX)−1(XTAX)

)
,

with X ∈Md×d′(R), is invariant with respect to right multiplications by invertible matrices.
Indeed, if R ∈ GLd′(R),

T (XR) = tr
(
(RTXTBXR)−1(RTXTAXR)

)
= tr(R−1(XTBX)−1R−TRT (XTAX)R)

= tr((XTBX)−1(XTAX)RR−1) = T (X).

Since U maximizes T and U = PQ|V |, then PQ also maximizes T . In addition, as from
P TAP = D and P TBP = I we obtain that

D = P TAP = (P TBP )−1(P TAP ) = P−1B−1P−TP TAP = P−1B−1AP,

we conclude that P diagonalizes B−1A, and then, it contains as columns the eigenvectors of
this matrix. Since Q contains the d′ first eigenvectors of the canonical basis by columns, PQ
contains as columns the d′ first eigenvectors of B−1A, corresponding to its d′ largest eigen-
values. This ends the proof, because a solution for the problem given by Eq. 23, which is
equal to maximizing T except for a transposition, consists in adding those vectors as rows.

Theorem Let d′, d ∈ N, with d′ ≤ d. Let A,B ∈ Sd(R)+, and we consider the optimiza-
tion problem

max
L∈Md′×d(R)

tr
(
(LBLT )−1(LALT ) + (LALT )−1(LBLT )

)
(24)

The problem attains a maximum if L =

— v1 —
. . .

— vd′ —

, where v1, . . . , vd′ are the d′

eigenvectors of B−1A with the highest values for the expression λi + 1/λi, where λi is the
eigenvalue associated with vi.

Proof First of all, given C ∈ Sd(R)+ we consider the optimization problem

max
L∈Md′×d(R)

tr
(
(LCLT + LC−1LT )

)
= max

L∈Md′×d(R)
tr
(
L(C + C−1)LT

)
(25)

Using Theorem 22, a solution to this problem can be found by taking as rows of L the
eigenvectors of C + C−1 corresponding to its d′ largest eigenvalues. Observe that the
eigenvectors of C and C−1 are the same, and each one’s eigenvalues are the inverse of the
other. Therefore, C+C−1 also has the same eigenvectors, and its eigenvalues have the form
λ+ 1/λ, for each λ eigenvalue of C. Then, the previous solution for Eq. 25 is equivalent to
taking the eigenvectors of C for which λ+ 1/λ is maximized.

Finally, we only have to realize that we can follow the same proof as in Theorem 12,
considering Eqs. 25 and 24 instead of Eqs. 22 and 23.
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