
CS760 Fall 2019 Machine Learning

Some Statistical Learning Theory

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

Consider a family of binary classifiers G = {g : X 7→ {−1, 1}}. G can be either probabilistic models or not,
such as decision trees, neural nets, SVMs, logic rules, the groundhog family of Punxsutawney Phil, a tank
full of Paul the Octopus’ relatives, etc. Each g ∈ G predicts the label y = g(x) from input x.

Importantly, assume an unknown but fixed joint distribution p(x, y) from which the training and future
test items are sampled. Now consider the 0-1 loss. This leads to the risk of g

R(g) = E(g(x) 6= y).

F The expectation is over (x, y) ∼ p. g(x) 6= y takes value in {0, 1}. The “test set error” in practice is an
unbiased estimate of the risk.

Our ultimate goal is to pick g ∈ G so that the risk is minimized. It is important to understand three
fundamental limits on how low the risk can go:

1. Since p(y | x) may not be “crisp”, there is a Bayes risk lower bound on any classifier. Let η(x) = E(Y |
X = x) = 2p(y = 1 | x)− 1. Then the Bayes classifier is B(x) = sign(η(x)). It achieves the minimum
risk over all measurable functions R(B) = infg R(g) (Note the inf is not restricted to G). This risk is

known as the Bayes risk R(B) = E(1−|η(x)|
2).

2. It is possible that B /∈ G. For example, G may consists of all linear classifiers but B may have
a nonlinear decision boundary. In this case, we settle for finding g∗ = arg infg∈GR(g). The gap
R(g∗) − R(B) is known as the approximation error, i.e., the error incurred from approximating the
concept B with an incorrect set G.

3. We are only given a finite training set (x1, y1) . . . (xn, yn)
iid∼ p, not p itself, to find g∗. In general, our

learning algorithm will return some ĝ ∈ G based on the training set. ĝ usually does not coincide with
g∗. This incurs another gap R(ĝ)−R(g∗), which is known as the estimation error. Namely, the error
stemming from estimating g∗ with limited data. Note the estimation error is a random variable, while
the approximation error is not.

With the definitions above, we have

R(ĝ)−R(B) = [R(ĝ)−R(g∗)] + [R(g∗)−R(B)] = estimation error + approximation error.

F This decomposition is similar to the bias-variance trade-off, with estimation error playing the role of
variance and approximation error playing the role of bias.

In particular, we will focus on the empirical risk minimizer :

ĝ = argming∈GRn(g)

where

Rn(g) =
1

n

n∑
i=1

g(xi) 6= yi.

F Empirical risk minimization minimizes training error. This does not automatically lead to overfitting,
though. Actually, we are going to precisely quantify overfitting. The behavior of other ĝ’s, such as the
regularized empirical risk minimizer, can be analyzed, too.

1

Some Statistical Learning Theory 2

Furthermore, for simplicity we will focus on bounding estimation error and disregard approximation
error. That is, we want to have a statement that for “most” training sets sampled from p,

R(ĝ) ≤ R(g∗) + func(n,G).

This will be made precise soon. The key ingredient is a bound between the empirical risk and the true error
Rn(g)−R(g), to which we now turn to.

1 For a fixed g chosen before seeing training data

To start, let us consider any pre-specified g ∈ G before seeing the training data. This is important: we
cannot pick g ∈ G using the training data, or what follows will not apply.

The strong law of large numbers states that Rn(g) → R(g) almost surely as n → ∞. However, neither
this law nor the central limit theorem quantifies the relation between Rn(g) and R(g) for a finite n. Instead,
this is studied by the so-called concentration of measure. Hoeffding’s inequality is one such concentration
inequality.
Theorem 1 (Hoeffding) Let Z1, . . . , Zn be independent with P (Zi ∈ [a, b]) = 1 and the same mean µ.
Then for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ > ε

)
≤ 2e

− 2nε2

(b−a)2 . (1)

In our problem, Zi = l(g(xi), yi) where l(y′, y) = [y′ 6= y] is the 0-1 loss function. It is easy to see that
1
n

∑n
i=1 Zi = Rn(g), and µ = R(g). Furthermore, Zi ∈ [0, 1] because of the 0-1 loss. Therefore, Hoeffding’s

inequality gives

P (|Rn(g)−R(g)| > ε) ≤ 2e−2nε
2

. (2)

In fact, there is a one-sided bound

P (R(g)−Rn(g) > ε) ≤ e−2nε
2

. (3)

Defining δ = e−2nε
2

, we can rewrite

ε =

√
log 1

δ

2n
. (4)

This leads to the following statement:

Theorem 2 For a fixed g, for any δ > 0, with probability at least 1− δ

R(g) ≤ Rn(g) +

√
log 1

δ

2n
. (5)

Two things should be noted. First, if g is selected using a training set, this bound does not apply (see
next section). Second, the probability 1 − δ is w.r.t. training set generation. Consider all training sets of
size n. Some of such sets are “good” in the sense of (5), namely g’s true error is not too far from its training
error on the set. The theorem says that with probability at least 1 − δ, your randomly generated training
set will be a good one.

F How tight is the Hoeffding bound? Consider δ = 0.05, namely 95% of the training sets will satisfy the

bound. For this δ, the deviation

√
log 1

δ

2n is 0.39 for n = 10 (this is pretty bad – Rn(g) is not very indicative

of R(g); not very surprising though given the very small training set); 0.12 for n = 100; 0.04 for n = 1000,
and 0.01 for n = 10, 000 (need a lot of training data to achieve one percent). Keep in mind though, this
does not apply to a learned (i.e., somehow picked using training data) classifier!

Some Statistical Learning Theory 3

2 Uniform deviation for finite G

“Learning” or “training” means we select ĝ ∈ G using the training set. The simple bound (5) no longer
apply because now ĝ is selected based on the particular training set (you can show this with simulation).
One way to proceed is to look at uniform deviation, namely bounding

sup
g∈G

R(g)−Rn(g)

because any upper bound is also a bound on the trained classifier ĝ:

R(ĝ)−Rn(ĝ) ≤ sup
g∈G

R(g)−Rn(g).

Uniform deviation can be better understood if we look again at the meaning of δ for a fixed g. Let’s
explicitly define the “bad” training sets for g:

BADg = {(x, y)1:n : R(g)−Rn(g) > ε}.

Hoeffding’s says that

P (your training set ∈ BADg) ≤ e−2nε
2

.

Now, you have many g ∈ G, each has its own BADg (which in general may not be the same). Assume |G| is
finite for now (which is not true for things like all linear classifiers). We observe that the union bound states
that

P (your training set ∈ ∪g∈GBADg) ≤
∑
g∈G

P (your training set ∈ BADg) = |G|e−2nε
2

.

Inverting it, we get the probability that your training set is good for all g ∈ G: With probability at least
1 − |G|e−2nε2 , supg∈GR(g) − Rn(g) ≤ ε. Again, let δ = |G|e−2nε2 and we arrive at a uniform deviation
bound.
Theorem 3 For any δ > 0, with probability at least 1− δ,

sup
g∈G

R(g)−Rn(g) ≤
√

log |G|+ log(1/δ)

2n
.

This bound holds “uniformly,” i.e., for all g ∈ G. The price we have to pay is a loose bound with
the additional log |G| term which stems from the union bound. This immediately leads to a bound on the
particular learned classifier ĝ:

R(ĝ)−Rn(ĝ) ≤
√

log |G|+ log(1/δ)

2n
. (6)

F Example. There has been 56 US presidential elections. There are |G| = 3100 US counties. Under great
simplifications, view each county’s voting outcome as a classifier g: election-index 7→ candidate. Suppose
you looked for and found a county ĝ that always correctly predicts the election outcome, namely Rn(ĝ) = 0.
How well does this county predict future elections? With probability at least 0.95,

R(ĝ) ≤ 0 +

√
log(3100) + log(1/0.05)

2× 56
= 0.31.

The bound is not that great.

Some Statistical Learning Theory 4

3 Bounding the estimation error for finite G

So far we have been bounding R(g)−Rn(g) for all g ∈ G. In the special case where our algorithm performs
empirical risk minimization so that ĝ = argming∈GRn(g), we can easily bound the estimation error. The
key is Rn(ĝ) ≤ Rn(g∗).

R(ĝ)−R(g∗) (7)

= R(ĝ)−Rn(ĝ) +Rn(ĝ)−R(g∗) (8)

≤ R(ĝ)−Rn(ĝ) +Rn(g∗)−R(g∗) (9)

≤ 2 sup
g∈G
|R(g)−Rn(g)| (10)

= 2

√
log |G|+ log(2/δ)

2n
. (11)

4 Growth number

In general, however, the prior trick does not work. The key idea is that even an infinite G can only produce a
finite number of classification patterns on any training set of size n, thus forming a finite number of equivalent
classes. With proper care, things go back to the finite regime.

We first define the number of classification patterns. A single g produces an n-vector (g(x1) 6= y1, . . . g(xn) 6=
yn) on the training data. The set of n-vectors produced by G

{(g(x1) 6= y1, . . . g(xn) 6= yn) : g ∈ G}

has at most 2n members. Clearly this set depends on the training data: in the (unlikely) event that
x1 = . . . = xn, y1 = . . . = yn the set can have at most 2 members. But let’s think of the training data that
produces the largest such set, and call the size of the set SG(n):

SG(n) = sup
(x1,y1)...(xn,yn)

|{(g(x1) 6= y1, . . . g(xn) 6= yn) : g ∈ G}| . (12)

SG(n) is known as the growth number.
Example 1 Let G = {ax + b ≥ 0 : a, b ∈ R} for x ∈ R (abuse of notation: the Boolean expression returns
1 or -1). G consists of 1D threshold classifiers. Then SG(1) = 2 since we can find a classifier to correctly
classify some (x, y), or misclassify it. SG(2) = 4 since we can find four classifiers to produce all possible
patterns on (1, 1), (2, 1). SG(3) = 6 since the following patterns are possible:

1 1 1

0 1 1

0 0 1

0 0 0

1 0 0

1 1 0

while 1 0 1 and 0 1 0 are impossible. In general for this G, SG(n) = 2n.
To use the growth number, we first introduce an interesting symmetrization lemma which turns a bound

on infinite G into another bound on patterns on 2n items (i.e., finite!). We introduce a ghost sample of size

n: (x′1, y
′
1) . . . (x′n, y

′
n)

iid∼ p. The ghost sample is drawn from the same p as the training sample. The key is
that the ghost and real training samples are independent. The ghost sample is purely a conceptual object –
we don’t really have to generate them. We define

R′n(g) =
1

n

n∑
i=1

g(x′i) 6= y′i

Some Statistical Learning Theory 5

to be the ghost empirical risk. Like the empirical risk Rn(g), R′n(g) is a random variable since it depends
on the ghost sample.

Lemma 1 (Symmetrization) For all ε ≥
√

2 log 2
n ,

P

(
sup
g∈G

R(g)−Rn(g) > ε

)
≤ 2P

(
sup
g∈G

R′n(g)−Rn(g) >
ε

2

)
Proof: Let the “worst difference classifier” be

gw = arg sup
g∈G

R(g)−Rn(g).

Note gw is a random variable since it depends on the training sample. We will use 1z to
denote the Boolean function on z. Consider

1R(gw)−Rn(gw)>ε1R(gw)−R′n(gw)< ε
2

(13)

= 1(R(gw)−Rn(gw)>ε)∧(R′n(gw)−R(gw)>− ε2) (14)

≤ 1R′n(gw)−Rn(gw)> ε
2
. (15)

To see the last step, note that (x − y > a) ∧ (z − x > b) implies z − y > a + b, but not vice
versa. To see this, let a = b = 0. z > y does not mean z > x > y (which is x > y ∧ z > x).
In other words, sometimes 1z−y>a+b = 1 but 1x−y>a∧z−x>b = 0.

Take the expectation w.r.t. the ghost sample,

1R(gw)−Rn(gw)>εP
′
(
R(gw)−R′n(gw) <

ε

2

)
(16)

≤ P ′
(
R′n(gw)−Rn(gw) >

ε

2

)
. (17)

Now, gw is picked according to the real sample. From the perspective of P ′ it is just some
fixed classifier. Hence the Hoeffding bound (1) applies:

P ′
(
R(gw)−R′n(gw) >

ε

2

)
≤ e−2n(ε/2)

2

.

Due to our assumption ε ≥
√

2 log 2
n , it is easy to show e−2n(ε/2)

2 ≤ 1/2. Taking the comple-

ment gives

P ′
(
R(gw)−R′n(gw) <

ε

2

)
≥ 1− e−2n(ε/2)

2

≥ 1/2.

This leads to

1R(gw)−Rn(gw)>ε ·
1

2
≤ P ′

(
R′n(gw)−Rn(gw) >

ε

2

)
.

Since we picked gw, the LHS can be rewritten as

1supg∈G R(g)−Rn(g)>ε.

We also have

P ′
(
R′n(gw)−Rn(gw) >

ε

2

)
≤ P ′

(
sup
g∈G

R′n(g)−Rn(g) >
ε

2

)
= P

(
sup
g∈G

R′n(g)−Rn(g) >
ε

2

)
,

where the inequality comes from sup, and the equality is because of symmetry between ghost
and real samples. These give

1supg∈G R(g)−Rn(g)>ε ≤ 2P

(
sup
g∈G

R′n(g)−Rn(g) >
ε

2

)
.

Finally, taking expectation w.r.t. the real sample gives the lemma.

Some Statistical Learning Theory 6

Let
G(2n) = {(g(x1) 6= y1, . . . g(xn) 6= yn, g(x′1) 6= y′1, . . . g(x′n) 6= y′n) : g ∈ G}

be the set of 2n-vectors produced by g ∈ G on the real and ghost samples. By definition |G(2n)| ≤ SG(2n).
We now apply the union bound:

P

(
sup
g∈G

R(g)−Rn(g) > ε

)
≤ 2P

(
sup
g∈G

R′n(g)−Rn(g) >
ε

2

)
(18)

= 2P

(
max

g∈G(2n)
R′n(g)−Rn(g) >

ε

2

)
(19)

≤ 2|G(2n)|P
(
R′n(g)−Rn(g) >

ε

2

)
(20)

≤ 2SG(2n)P
(
R′n(g)−Rn(g) >

ε

2

)
. (21)

There is a version of the Hoeffding’s inequality that bounds the difference between two samples:

P (R′n(g)−Rn(g) > t) ≤ e−nt
2/2.

We arrive at an important result.

Theorem 4 (Vapnik and Chervonenkis) Let G be a class of binary functions. For any ε ≥
√

2 log 2
n ,

P

(
sup
g∈G

R(g)−Rn(g) > ε

)
≤ 2SG(2n)e−nε

2/8

and hence, with probability at least 1− δ,

sup
g∈G

R(g)−Rn(g) ≤ 2

√
2

logSG(2n) + log 2
δ

n
.

Note: this is a tighter bound than the VC-dimension bound below.

5 VC dimension

Recall Example 1. In general for that G, SG(n) = 2n. However, there is something fundamentally different
for n = 1 and n = 2: our classifiers were able to produce all possible patterns. That is, we can write
SG(n) = 2n for n = 1, 2. In contrast, when n ≥ 3 there were patterns we couldn’t produce.

If SG(n) = 2n, there is a training set of size n where G can produce all patterns. We say G shatters that
training set.

Definition 1 The Vapnik-Chervonenkis (VC) dimension of G is the largest n such that SG(n) = 2n. Equiv-
alently, the VC dimension is the size of the largest training set that G can shatter.

Example 2 Let G be all linear classifiers in Rd. Then the VC dimension of G is d+ 1.

Example 3 The VC dimension is not simply measuring the number of parameters in G. The one-parameter
family G = {sign(sin(ax)) : a ∈ R} has infinite VC dimension.

Here is the important but subtle relation between the growth function SG(n) and the VC dimension:
SG(n) grows exponentially up to n = V Cdim(G), but for larger n it reduces to a much slower polynomial
growth. Think of Example 1 when n ≥ 3.

Some Statistical Learning Theory 7

Theorem 5 (Sauer) Let G has finite VC dimension h. Then for all n

SG(n) ≤
h∑
i=0

(
n

i

)
.

For all n ≥ h
SG(n) ≤

(en
h

)h
.

Applying the last inequality on SG(2n) we immediately get the following bound, expressed with VC
dimension:

Corollary 1 Let G be a class of binary functions with VC dimension h. With probability at least 1− δ,

sup
g∈G

R(g)−Rn(g) ≤ 2

√
2
h log n+ h log 2e

h + log 2
δ

n
.

In this uniform deviation bound the important term is
√

h logn
n .

	For a fixed g chosen before seeing training data
	Uniform deviation for finite G
	Bounding the estimation error for finite G
	Growth number
	VC dimension

