CS 760: Machine Learning
Supervised Learning

University of Wisconsin-Madison

Announcements
*HW 0 due tonight (1/27) before midnight

*Reminder about office hours:
eJerry: Thursdays 4-5pm in MH 5520
*Michael: Tuesdays 11am-12pm in MH 5581
*Avi: Mondays 5:30-6:30pm in MH 5581

*Everything can be found on course webpage:
https://pages.cs.wisc.edu/~jerryzhu/cs760.html

https://pages.cs.wisc.edu/~jerryzhu/cs760.html

Outline

*Review from last time
*Features, labels, hypothesis class, training, generalization

°Instance-based learning
*k-NN classification/regression, locally weighted regression,

strengths & weaknesses, inductive bias

eDecision trees

* Setup, splits, learning, information gain, strengths and
weaknesses

Outline

*Review from last time
*Features, labels, hypothesis class, training, generalization

Supervised Learning: Formal Setup

Problem setting
*Set of possible instances X

*Unknown target function f X =)

*Set of models (a.k.a. hypotheses): H — {h|h - X — y}

Get
* Training set of instances for unknown target function,
where £ (@)

L), (2, y®),.

Supervised Learning: Objects

Three types of sets
*Input space, output space, hypothesis class
X, YV, H
*Examples:

*Input space: feature vectors X C Rd

*Output space:

*Binary y — {—1, —|—1}
*Continuous y C R

safe poisonous

13.23°

Output space: Classification vs. Regression

Choices of)/ have special names:

Discrete: “classification”. The elements of)/ are classes
*Note: doesn’t have to be binary

e
Ny l)\\
Versmo'or

*Continuous: “regression”
*Example: linear regression

*There are other types...

Hypothesis class

*Pick specific class of models. Ex: linear models: -

h@(fl?) — (9() -+ (91561 + (92332 + ...+ Qda;'d

*Ex: feedforward neural networks

f¥(@) = a(Wy 7V (x)))

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

*One way: empirical risk minimization (ERM)

f =arg mm—Zf), y'))

heH N
\
I Model prediction

Hypothesis Class
Loss function (how far are we)?

* Recall: we want to generalize.
*Do well on future (test) data points, not just on training data.

SRS ;ﬁw TR S
MI‘, 5

e 1 'y
e el "

. il 3 o e

Break & Questions

Outline

°Instance-based learning

*k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the same
label

*Example: classify car/no car
*All features same, except location of car

*What does “nearby” mean?

1-Nearest Neighbors: Algorithm
Training/learning: given

{(zM yM)) (2@ y@), o (2™ ym)))

Prediction: for 7,
1. find the nearest training point 2 (J)
2. return y(j)

1-Nearest Neighbors: Algorithm

safe

poisonous

Prediction: for 7,

*)
1. find the nearest training point ()
2. return y(j)poisonous

1NN DecCiIsion regions

AN S S S S YRR NN

Defined by “Voronoi Diagram”
*Each cell contains points closer to a particular trainin

point

k-Nearest Neighbors: Classification

Training/learning: given

{(xW yM) (2P ¢y o (2(m) y(m)))

Prediction: for &, find k most similar training points
Return plurality class k

*i.e. among the k points, output most popular class.

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

d
dp (@, 2V) =y Hal) # a))

Continuous features:
*Euclidean distance: d(x(i),x(j)) _ (

d
L1 (Manhattan) dist.: d(x(i), x(j)) _ Z
a=1

o) a)

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
*Compute empirical mean/stddev for a feature (in train set)

] — . 1 < |
— _ (2))
2 P
1= i=1
(J) B
Standardize features: 7)) — Ha

*Do the same for test points! ¢ g,

N[=

k-Nearest Neighbors: Mixed Distances

Might have features of both types
* Sum two types of distances component

* Might need normalization, (e.g. normalize individual
distances to maximum value of 1)

- Pros: “handles” different units
- Cons: potentially magnifies noisy features

- caution: use your domain knowledge to double check the resulting
distance function!

k-Nearest Neighbors: Regression

Training/learning: given

{(xW M) (22 @)y (™) y(m)))

Prediction: for &, find k most similar training points

Return ! k
S (%)

*i.e. among the k points, output mean label.

k-Nearest Neighbors: Variations

Could contribute to predictions via a weighted distance
*All k no longer equally contribute
*Classification / regression

k

1 |
< arg max ~0(v, y()

ve)y — d(m, iE(Z))

271;1 y(i)/d(g;, x(i)>2
Sy 1/d(z, 2(®)?

A
i
Y <

Dealing with Irrelevant Features

One relevant feature X Effect of an irrelevant feature X,
on distances and nearest

1-NN rule classifies each neighbors

instance correctly

® - O
O
o ©
X,
.-@®
o
° O

Instance-Based Learning: Strengths & Weaknesses

Strengths

e Easy to explain predictions

e Simple to implement and conceptualize.
* No training!

* Often good in practice

Weaknesses

 Sensitive to irrelevant + correlated features
*Can try to solve via variations. More later

* Prediction stage can be expensive
* No “model” to interpret

Inductive Bias

* Inductive bias: assumptions a learner uses to predict y. for a previously unseen
instance x.

 Two components (mostly)
* hypothesis space bias: determines the models that can be represented
* preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN decomposition of space instances in neighborhood
determined by nearest neighbors belong to same class

Break & Quiz

Q1-1: Table shows all the training points in 2D space and their l[abels. Assume 3NN
classifier and Euclidean distance. What should be the labels of the points A: (1, 1)
and B(2, 1)?

1. A:+,B:- X y label
2. A:-, B:+ 0 0 +
3. A:-,B:- 1 0 +
4. A:+, B:+ 5 0 N
2 2 +
3 nearest neighbors to point A are (0, 1) [-], (1, 0 1
0) [+], (1, 2) [-]. Hence, the label should be [-] 0 5
1 2

3 nearest neighbors to point B are (2, 0) [+], (2,
2) [+], (3, 1) [-]. Hence, the label should be [+] 3 1

Q1-2: In a distance-weighted nearest neighbor, which of the following

weight is NOT appropriate? Let p be the test data point and x. {i = 1: N} be
training data points.

- w=dlp,)t

2. W = d(p, Xi)_2
5. w, = exp(-d(p, x.))

2. W =1

' The intuition behind weighted kNN, is to give more weight to
the points which are nearby and less weight to the points which
are farther away. Any function whose value decreases as the
distance increases can be used as a function for the weighted
knn classifier. w = 1 is also OK as it reduces to our traditional
nearest-neighbor algorithm.

Outline

eDecision trees

* Setup, splits, learning, information gain, strengths and
weaknesses

Decision Trees: Heart Disease Example

normal

major_vessels >0

true

chest_pain_type

thal

fixed_defect

present

false

absent

absent

absent

absent

reversible defect

present

Each internal node tests one feature X,

Each branch from an internal node
represents one outcome of the test

Each leaf predicts y or P(y | x)

present

Decision Trees: Logical Formulas

* Suppose X, ... X, are Boolean features, and Y is also
Boolean

*How would you represent the following with decision trees?
Y =X,X: (le.Y =X, AXg)
Y =X, Vv X,

Y =X, X, v X,—X,

Decision Trees: Textual Description

Med_d efect

thal

major_vessels >0

present

/\e

present

absent

thal = normal
[# _major_vessels > 0] = true: present
[# _major_vessels > 0] = false: absent
thal = fixed defect: present

Decision Trees: Mushrooms Example

odor = a: e (400.0) > if odor=almond, predict edible
odor = c: p (192.0)
odor = f£f: p (2160.0)
odor = 1: e (400.0)
odor = m: p (36.0)
odor = n
spore-print-color = b: e (48.0)
spore-print-color = h: e (48.0)
spore-print-color = k: e (1296.0)
spore-print-color = n: e (1344.0)
spore-print-color = o: e (48.0)
spore-print-color = r: p (72.0)
spore-print-color = u: e (0.0) .
spore-print-color = w if odor=none A

g;ll-s;ze = b: e (528.0) . .
gill-size = n spore-print-color=white A

gJ:.ll-spaCJ:.ng = Cc: p (32.0)\

e gill-size=narrow A

| population = a: e (0.0) . .
BonETEt10n = ol B (16401 gill-spacing=crowded,
population = n: e (0.0) . .
population = s: e (0.0) prEdlct POISONOUS
population = v: e (48.0)
population = y: e (0.0)

spore-print-color = y: e (48.0)

odor = p: p (256.0)
odor = s: p (576.0)
odor = y: p (576.0)

Decision Trees: Learning

°lea rning Algonthm MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

if stopping criteria is met
make a leaf node N

determine class label for N

‘ else
make an internal node N

S = FindBestSplit(D, C)
for each group kof S

NN \\ D, = subset of training data in group k
ﬁ/\ ; k™ child of N = MakeSubtree(D,)
‘V\fo 31....4m

return subtree rooted at N

Decision Trees: Learning

°lea rning Algonthm MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

if stopping criteria is met
make a leaf node N

determine class label for N

‘ else
make an internal node N

S = FindBestSplit(D, C)
for each group kof S

e ﬁ \\ D, = subset of training data in group k&
| The 3 k™ child of N = MakeSubtree(D,)
R . 31....4m
Ny return subtree rooted at N

1. DT Learning: Candidate Splits

First, need to determine how to split features
*Splits on nominal features have one branch per value

thal

*Splits on numeric features use a threshold/interval

weight < 35

truNse

ID3, C4.5

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature X_
*Sort the values of X_in D

*Evaluate split thresholds in intervals between instances of
different classes

weight <35

weight (—0—0—0—\—0 = @ ‘ - >
’ true false
17 35

Numeric Feature Splits Algorithm

// Run this subroutine for each numeric feature at each node of DT induction
DetermineCandidateNumericSplits(set of training instances D, feature X))
C={} //initialize set of candidate splits for feature X_

let v, denote the value of X, for the j™ data point

sort the dataset using v, as the key for each data point

for each pair of adjacent Vo Vi in the sorted order
if the corresponding class labels are different
add candidate split X, < (v].+ v].+])/2 to C

return C

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features (CART does this)

thal

MNMG_CI efect V fiXEd_d efect

color

red VblNen V vyellow

Decision Trees: Learning

°lea rning Algonthm MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

if stopping criteria is met
make a leaf node N

determine class label for N

‘ else
make an internal node N

S = FindBestSplit(D, C)
for each group kof S

e ﬁ \\ D, = subset of training data in group k&
| The 3 k™ child of N = MakeSubtree(D,)
R . 31....4m
Ny return subtree rooted at N

Decision tree Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

*Intuition: the simplest tree that classifies the training
instances accurately will generalize

Occam’s razor
*“when you have two competing theories that make the same

predictions, the simpler one is the better”

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

eintuition: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?

*There are fewer short models (i.e. small trees) than long ones

*A short model is unlikely to fit the training data well by chance

*A long model is more likely to fit the training data well coincidentally

y
5

o8 ‘\ v.,:l
=
K 5
%

%N &
{ st, \thy avor 3
. N
. 3
A6 .
) -
>

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?
*NO! This is an NP-hard problem

[Hyafil & Rivest, Information Processing Letters, 1976]

*|nstead, we’ll use an information-theoretic heuristic to
greedily choose splits

Information Theory: Super-Quick Intro

eGoal: communicate information to a receiver in bits
*Ex: as bikes go past, communicate the maker of each bike

Information Theory: Encoding

*Could send out the names of the manufacturers in binary
coded ASCII text string

*Suppose there are 4: Trek, Specialized, Cervelo, Serrota

*Inefficient... since there’s just 4, we could encode them
of bits: 2 per communication

type code
Trek 11
Specialized 10
Cervelo 01

Serrota 00

Information Theory: Encoding

*Now, some bikes are rarer than others...
*Cervelo is a rarer specialty bike.

*We could save some bits... make more popular messages fewer
bits, rarer ones more bits

*Note: this is on average

*Expected # bits: 1.75 Type/probability # bits code
P(Trek)=0.5

o Z P logg () P(Specialized) =0.25 2 01

YyEeY P(Cervelo)=0.125 3 001

P(Serrota) =0.125 3 000

Information Theory: Entropy

*Measure of uncertainty for random variables/distributions

*Expected number of bits required to communicate the value
of the variable 1

ZP log2 () %0.5

yey

0.5
Pr(X=1)

Information Theory: Conditional Entropy

*Suppose we know X. CE: how much uncertainty left in Y?

HY|X)=) P(X H(Y|X = z)

*Here,
HY|X =2) ==Y ,cy P(Y =y|X = 2)logy P(Y = y|X =z

*What is it if Y=X?
*What if Y is independent of X?

Information Theory: Conditional Entropy

*Example. Y is still the bike maker, X is color.

joint prob P(X,Y) Black White

Trek 0.25 0.25
0.125 0.125
0.125 0

Serrota 0 0.125

H(Y|X=black) = -0.5 log(0.5) — 0.25 log(0.25) — 0.25 log(0.25) — 0 = 1.5
H(Y | X=white) = -0.5 log(0.5) — 0.25 log(0.25) -0 — 0.25 log(0.25) = 1.5
H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5

Information Theory: Mutual Information

* Mutual information = information gain

[(Y:X)=H(Y) - H(Y|X)

Interpretation:
*How much can the uncertainty of Y be reduced by knowing X?
*Or, how much information about Y can you glean by knowing X?

P(X,Y) Black White

Trek 0.25 0.25
0.125 0.125
0.125 0

Serrota 0 0.125

I(Y:X) = H(Y) = H(Y|X) = 1.75 - 1.5 = 0.25

DT Learning: Back to Splits

Want to choose split S that maximizes

IDfOG&iH(D, S) — HD(Y) — HD(Y‘S)

i.e. mutual information.

*Note: D denotes that this is the empirical entropy

*We don’t know the real distributions of Y and S, just have our
dataset

*Equivalent to maximally reducing the entropy of Y
conditioned on a split S

DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

PlayTennis: training examples

Day Outlook Temperature = Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

DT Learning: InfoGain For One Split

e What is the information gain of splitting on Humidity?

D: [9+, 5-]

9 a2 5 5
— H, (Y)=-—— ~lo 0.940
Humidity =" gz(mj 14 g2(14j
hV\normal
D: [3+, 4-] D: [6+, 1-]

6 6 1 1
. 3 3 4 4 __ e P -
HD(Y|hlgh)=—;log2(7j—7log{;) H, (¥ [normal) 71"&(7) 71%(7)

= 0.985 =0.592

InfoGain(D, Humidity) = H,(Y) — H, (Y | Humidity)
7 7
=0.940—| —(0.985)+ —(0.592
Zmy- Lo

=0.151

DT Learning: Comparing Split InfoGains

e |s it better to split on Humidity or Wind?

D: [9+, 5-] D: [9+, 5-]
Humidity Wind
hV\normal we/\strong
D: [3+, 4-] D: [6+, 1-] D: [6+, 2-] D: [3+, 3-]

H, (Y |weak)=0.811 H (Y |strong)=1.0

InfoGain(D, Humidity) = 0.940 — [%(0.985) + %(0.592)}
=0.151
: : 8 6
InfoGain(D, Wind) = 0.940 — [a (0.811)+ " (1 .O)}

=0.048

DT Learning: InfoGain Limitations

*InfoGain is biased towards tests with many outcomes

*Splitting on it results in many branches, each of which is
“pure” (has instances of only one class)

In the extreme: A feature that uniquely identifies each instance
Maximal information gain!

‘Use GainRatio: normalize information gain by entropy

GainRatio(D, §) = Infog‘;i?él))’s) — HD(YIZ[;%?)(WS)

Homework: What is a good stopping criteria?

oLearning Algonthm MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)
if stopping criteria is met
make a leaf node N
determine class label for N
else
make an internal node N
S = FindBestSplit(D, C)
for each group kof S
D, = subset of training data in group k&
k™ child of N = MakeSubtree(D,)

return subtree rooted at N

Inductive Bias

* Recall: Inductive bias: assumptions a learner uses to predict y. for a previously
unseen instance x.

* Two components
* hypothesis space bias: determines the models that can be represented
* preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN Decomposition of spce determined instances in neighborhood
by nearest neighbors belong to same class

Q2-1: Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split

again using the same feature.
2. We should split along all features to create a decision tree.

3. We should keep splitting the tree until there is only one data point

left at each leaf node.

All false!l

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Misha Khodak,
Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos,
Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie.

