
CS 760: Machine Learning
Supervised Learning

University of Wisconsin-Madison

Announcements

•HW 0 due tonight (1/27) before midnight

•Reminder about office hours:
•Jerry: Thursdays 4-5pm in MH 5520
•Michael: Tuesdays 11am-12pm in MH 5581
•Avi: Mondays 5:30-6:30pm in MH 5581

•Everything can be found on course webpage:
https://pages.cs.wisc.edu/~jerryzhu/cs760.html

https://pages.cs.wisc.edu/~jerryzhu/cs760.html

Outline

•Review from last time
•Features, labels, hypothesis class, training, generalization

•Instance-based learning
•k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

•Decision trees
• Setup, splits, learning, information gain, strengths and
weaknesses

Outline

•Review from last time
•Features, labels, hypothesis class, training, generalization

•Instance-based learning
•k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

•Decision trees
• Setup, splits, learning, information gain, strengths and
weaknesses

Supervised Learning: Formal Setup

Problem setting
•Set of possible instances

•Unknown target function

•Set of models (a.k.a. hypotheses):

Get
• Training set of instances for unknown target function,
 where

safe safepoisonous

Supervised Learning: Objects

Three types of sets
•Input space, output space, hypothesis class

•Examples:
•Input space: feature vectors

•Output space:
•Binary

•Continuous

safe poisonous

Output space: Classification vs. Regression

Choices of have special names:

•Discrete: “classification”. The elements of are classes
•Note: doesn’t have to be binary

•Continuous: “regression”
•Example: linear regression

•There are other types…

Hypothesis class

•Pick specific class of models. Ex: linear models:

•Ex: feedforward neural networks

Wikipedia

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM)

• Recall: we want to generalize.
•Do well on future (test) data points, not just on training data.

Model prediction

Loss function (how far are we)?
Hypothesis Class

Break & Questions

Outline

•Review from last time
•Features, labels, hypothesis class, training, generalization

•Instance-based learning
•k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

•Decision trees
• Setup, splits, learning, information gain, strengths and
weaknesses

Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the same
label

•Example: classify car/no car
•All features same, except location of car

•What does “nearby” mean?

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for ,

1. find the nearest training point

2. return

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for ,

1. find the nearest training point

2. return

safe

poisonous

poisonous

1NN: Decision Regions`````
```````````````

Defined by “Voronoi Diagram”

•Each cell contains points closer to a particular training point



k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for     , find k most similar training points

Return plurality class

•i.e. among the k points, output most popular class.



k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:

•Euclidean distance:

•L1 (Manhattan) dist.:



k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:

•Compute empirical mean/stddev for a feature (in train set)

•Standardize features: 
•Do the same for test points!



k-Nearest Neighbors: Mixed Distances

Might have features of both types
• Sum two types of distances component

• Might need normalization, (e.g. normalize individual 
distances to maximum value of 1)

• Pros: “handles” different units
• Cons: potentially magnifies noisy features
• caution: use your domain knowledge to double check the resulting 
distance function!



k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for     , find k most similar training points

Return

•i.e. among the k points, output mean label.



k-Nearest Neighbors: Variations

Could contribute to predictions via a weighted distance

•All k no longer equally contribute

•Classification / regression



Dealing with Irrelevant Features

x
1

One relevant feature x1 

1-NN rule classifies each 
instance correctly

Effect of an irrelevant feature x
2 

on distances and nearest 
neighbors

x
1

x
2



Instance-Based Learning: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training! 
• Often good in practice

Weaknesses
• Sensitive to irrelevant + correlated features

•Can try to solve via variations. More later

• Prediction stage can be expensive
• No “model” to interpret



Inductive Bias

• Inductive bias: assumptions a learner uses to predict y
i
 for a previously unseen 

instance x
i

• Two components (mostly)

• hypothesis space bias: determines the models that can be represented
• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN decomposition of space 
determined by nearest neighbors

instances in neighborhood 
belong to same class



Break & Quiz



Q1-1: Table shows all the training points in 2D space and their labels. Assume 3NN 
classifier and Euclidean distance. What should be the labels of the points A: (1, 1) 
and B(2, 1)?

1. A: +, B: -

2. A: -, B: +

3. A: -, B: -

4. A: +, B: +

x y label

0 0 +

1 0 +

2 0 +

2 2 +

0 1 -

0 2 -

1 2 -

3 1 -

3 nearest neighbors to point A are (0, 1) [-], (1, 
0) [+], (1, 2) [-]. Hence, the label should be [-]

3 nearest neighbors to point B are (2, 0) [+], (2, 
2) [+], (3, 1) [-]. Hence, the label should be [+]



Q1-2: In a distance-weighted nearest neighbor, which of the following 
weight is NOT appropriate? Let p

 
be the test data point and x

i
 {i = 1: N} be 

training data points.

1. w
i
 = d(p, x

i
)½ 

2. w
i
 = d(p, x

i
)-2

3. w
i
 = exp(-d(p, x

i
))

4. w
i
 = 1

The intuition behind weighted kNN, is to give more weight to 
the points which are nearby and less weight to the points which 
are farther away. Any function whose value decreases as the 
distance increases  can be used as a function for the weighted 
knn classifier. w = 1 is also OK as it reduces to our traditional 
nearest-neighbor algorithm.



Outline

•Review from last time
•Features, labels, hypothesis class, training, generalization

•Instance-based learning
•k-NN classification/regression, locally weighted regression, 
strengths & weaknesses, inductive bias 

•Decision trees
• Setup, splits, learning, information gain, strengths and 
weaknesses



Decision Trees: Heart Disease Example

thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node 
represents one outcome of the test

Each leaf predicts y or P(y | x)



Decision Trees: Logical Formulas

• Suppose X
1
 …  X

5
 are Boolean features, and Y  is also 

Boolean
•How would you represent the following with decision trees?

 



Decision Trees: Textual Description

thal

#_major_vessels > 0 present

normal fixed_defect

true false

present absent

thal = normal
[#_major_vessels > 0] = true: present
[#_major_vessels > 0] = false: absent

thal = fixed_defect: present



Decision Trees: Mushrooms Example

if odor=almond, predict edible

if odor=none ∧ 
   spore-print-color=white ∧ 
   gill-size=narrow ∧
  gill-spacing=crowded,
predict poisonous



Decision Trees: Learning 

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group k of S

D
k
 = subset of training data in group k

kth child of N = MakeSubtree(D
k
)

return subtree rooted at N

•Learning Algorithm:



Decision Trees: Learning 

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group k of S

D
k
 = subset of training data in group k

kth child of N = MakeSubtree(D
k
)

return subtree rooted at N

•Learning Algorithm:



1. DT Learning: Candidate Splits

First, need to determine how to split features

•Splits on nominal features have one branch per value

•Splits on numeric features use a threshold/interval

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false

ID3, C4.5



DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature X
i

•Sort the values of X
i
 in D

•Evaluate split thresholds in intervals between instances of 
different classes

weight

17 35

weight ≤ 35

true false



Numeric Feature Splits Algorithm

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature X
i
)

C = {} // initialize set of candidate splits for feature X
i

let v
j
 denote the value of X

i
 for the jth data point

sort the dataset using v
j
 as the key for each data point

for each pair of adjacent v
j
, v

j+1
 in the sorted order

if the corresponding class labels are different

add candidate split X
i
 ≤ (v

j 
+ v

j+1
)/2 to C

return C



DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could 
require binary splits on all nominal features (CART does this)

thal

normal reversible_defect ∨ fixed_defect

color

red ∨blue green ∨ yellow



Decision Trees: Learning 

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group k of S

D
k
 = subset of training data in group k

kth child of N = MakeSubtree(D
k
)

return subtree rooted at N

•Learning Algorithm:



Decision tree Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

•Intuition: the simplest tree that classifies the training 
instances accurately will generalize

Occam’s razor
•“when you have two competing theories that make the same
 predictions, the simpler one is the better”



DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

•intuition: simplest tree that classifies the training 
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
•There are fewer short models (i.e. small trees) than long ones

•A short model is unlikely to fit the training data well by chance

•A long model is more likely to fit the training data well coincidentally



DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that 
accurately classifies the training set?
•NO! This is an NP-hard problem

[Hyafil & Rivest, Information Processing Letters, 1976]

•Instead, we’ll use an information-theoretic heuristic to 
greedily choose splits



Information Theory: Super-Quick Intro

•Goal: communicate information to a receiver in bits

•Ex: as bikes go past, communicate the maker of each bike



Information Theory: Encoding

•Could send out the names of the manufacturers in binary 
coded ASCII text string

•Suppose there are 4: Trek, Specialized, Cervelo, Serrota

•Inefficient… since there’s just 4, we could encode them
•# of bits: 2 per communication

11

10

01

00

Trek

Specialized

Cervelo

Serrota

type code



Information Theory: Encoding

•Now, some bikes are rarer than others…
•Cervelo is a rarer specialty bike.
•We could save some bits… make more popular messages fewer 
bits, rarer ones more bits

•Note: this is on average

•Expected # bits: 1.75
1

2

3

3

1

01

001

000

Type/probability # bits code



Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

•Expected number of bits required to communicate the value 
of the variable



Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y?

•Here, 

•What is it if Y=X? 

•What if Y is independent of X?



Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

joint prob P(X,Y) Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

H(Y|X=black) = -0.5 log(0.5) – 0.25 log(0.25) – 0.25 log(0.25) – 0 = 1.5
H(Y|X=white) = -0.5 log(0.5) – 0.25 log(0.25) –0 – 0.25 log(0.25) = 1.5
H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5



Information Theory: Mutual Information

• Mutual information = information gain

Interpretation: 

•How much can the uncertainty of Y be reduced by knowing X?

•Or, how much information about Y can you glean by knowing X?
P(X,Y) Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

I(Y:X) = H(Y) – H(Y|X) = 1.75 – 1.5 = 0.25



DT Learning: Back to Splits

Want to choose split S that maximizes

i.e. mutual information.
•Note: D denotes that this is the empirical entropy

•We don’t know the real distributions of Y and S, just have our 
dataset

•Equivalent to maximally reducing the entropy of Y 
conditioned on a split S



DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.



DT Learning: InfoGain For One Split

• What is the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]



DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

✔



DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is 
“pure” (has instances of only one class)

•In the extreme: A feature that uniquely identifies each instance
•Maximal information gain!

•Use GainRatio: normalize information gain by entropy



Homework: What is a good stopping criteria?

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group k of S

D
k
 = subset of training data in group k

kth child of N = MakeSubtree(D
k
)

return subtree rooted at N

•Learning Algorithm:



Inductive Bias

• Recall: Inductive bias: assumptions a learner uses to predict y
i
 for a previously 

unseen instance x
i

• Two components

• hypothesis space bias: determines the models that can be represented
• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

Decision trees trees with single-feature, 
axis-parallel splits

small trees identified by 
greedy search

k-NN Decomposition of spce determined 
by nearest neighbors

instances in neighborhood 
belong to same class



Q2-1: Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split 

again using the same feature. 

2. We should split along all features to create a decision tree.

3. We should keep splitting the tree until there is only one data point 

left at each leaf node.

All false!



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Misha Khodak, 
Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, 
Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie.


