CS 760: Machine Learning
Model Selection & Evaluation

University of Wisconsin-Madison



Outline

* Wrapping up decision trees
* Review, variations, information gain, regression
e Evaluation in decision trees: overfitting, pruning

* Evaluation: Measuring generalization
* Train/test split, random sampling, cross validation

e Evaluation: Performance metrics
* Confusion matrices, ROC curves, precision/recall



Outline

* Wrapping up decision trees
* Review, variations, information gain, regression
e Evaluation in decision trees: overfitting, pruning



[Review] Decision Trees: Learning

° Learning Algonthm MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

if stopping criteria is met
make a leaf node N

determine class label/probabilities for N

‘ else
make an internal node N

S = FindBestSplit(D, C)

for each outcome k of S

5 ﬁ \\ D, = subset of instances that have outcome k&
/e k™ child of N = MakeSubtree(D,)
» o EMA
<Ny return subtree rooted at N



[Review] Candidate Splits - Nominal Features

Instead of using k-way splits for k-valued features, could

require binary splits on all nominal features
(Classification and Regression Trees / CART does this)
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[Review] Candidate Splits - Numeric Features

Given a set of training instances D and a specific feature X_
* Sort the values of X in D

* Evaluate split thresholds in intervals between instances of different
classes

weight < 35

weight (—0—0—0—\—0 - @ ‘ - >
’ true false
17 35

* Do this for every numeric feature and add it to the candidate splits



[Review] Find Best Split

Hypothesis: simplest tree that classifies the
training instances accurately will generalize

Occam’s razor: “when you have two competing theories that
make the same predictions, the simpler one is the better”

Want to choose split S that maximizes

InfoGain(D, S) = Hp(Y) — Hp(Y]S)

i.e. mutual information.



[Review] InfoGain Limitations

*InfoGain is biased towards tests with many outcomes

*Splitting on it results in many branches, each of which is
“pure” (has instances of only one class)

In the extreme: A feature that uniquely identifies each instance
Maximal information gain!

*Use GainRatio: normalize information gain by entropy

GainRatio(D, §) = Infog‘;i?él))’s) — HD(YIZ[;%?)(WS)



Stopping Criteria

Some ideas
e Stop when you reach a single data point?
e Stop when the subset of instances are all in the same class?

e Stop when we a large fraction of the instances are all in the same
class?

e \We have exhausted all of the candidate splits

Stop earlier?



Variations

e Probability estimation trees

e |eaves: estimate the probability of each class

e Regression trees

e Either numeric values (e.g. average label) or functions (e.g. linear functions) at each leaf.
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Variations

e Probability estimation trees

e |eaves: estimate the probability of each class

e Regression trees

e Either numeric values (e.g. average label) or functions (e.g. linear functions) at each leaf.

e Tree ensembles

e Random forests [Breiman, 2001]
e XGBoost [Chen & Guestrin, 2016]

e Winner of many Kaggle competitions
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e @ o8 (62
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Figure 1: Tree Ensemble Model. The final predic-
tion for a given example is the sum of predictions
from each tree.



Decision Trees: Comments

* Widely used approach
*Many variations

* Provides humanly comprehensible models
* Not true for big trees / tree ensembles

°Insensitive to monotone transformations of
numeric features

*Implementation can (and does) vary,
performance may depend on specific choices.



Decision Trees: Learning

° Learning Algonthm MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

if stopping criteria is met
make a leaf node N

determine class label/probabilities for N

‘ else
make an internal node N

S = FindBestSplit(D, C)

for each outcome k of S

5 ﬁ \\ D, = subset of instances that have outcome k&
| The 3 k™ child of N = MakeSubtree(D,)
R . 31....4m
Ny return subtree rooted at N



Break & Quiz



Q1-1: How many distinct (binary classification) decision trees are
possible with 4 Boolean attributes? Here distinct means representing
different functions.

24
A
3 216



Q1-1: How many distinct (binary classification) decision trees are

possible with 4 Boolean attributes? Here distinct means representing
different functions.

5 216 - #distinct decision trees

= H#distinct Boolean functions
4 232 = #functions of 2* = 16 inputs, binary label for each



Model Selection in Decision Trees



Evaluation: Accuracy

*Can we just calculate the fraction of training instances that

are correctly classified?
e Consider a problem domain in which instances are assigned labels at random
with P(Y=1)=0.5
e How accurate would it be on its training set, if you stop when all instances
are in the same class? (training accuracy = 100%)

e How accurate would a learned decision tree be on previously unseen
instances?

e Recall: our goal is to do well on future data.



Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a set
of instances that are held-aside during learning

e This is called a test set

test

train



Overfitting

Notation: error of model h over
* training data: error_(h)
* entire distribution of data: error (h)

Model h overfits training data if it has
* low error on the training data (low error (h))

* high error on the entire distribution (high errorp(h)) °

Wikipedia



Overfitting Example: Noisy Data

(unknown) Target functionis Y = X; A X5

e There is noise in some feature values
e Training set:
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Overfitting Example: Noisy Data

Correct tree Tree that fits noisy training data
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Overfitting Example: Noise-Free Data

Target functionis Y = X; A X5
* P(X,=1)=0.5for both classes

e P(Y=1)=0.67

e Training set:




Overfitting Example: Noise-Free Data

e Training set is a limited sample. There might be (combinations of) features that
are correlated with the target concept by chance

Training set Test set t

accuracy accuracy t

X, .
TN

f

t f 100% 50% f

t 66% 66%




Overfitting Example: Polynomial Regression

e |s higher-degree = better?
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Overfitting: Tree Size vs. Accuracy

e Tree size vs accuracy 0.9 - - - - - - - - -
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General Phenomenon
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Figure from Deep Learning, Goodfellow, Bengio and Courville



General Phenomenon
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Reconciling modern machine learning practice and the bias-variance trade-off. Belkin et al



Modern Understanding — Double Descent

under-parameterized

Test risk
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Belkin et al. Reconciling modern machine learning practice and the bias-variance trade-off.



Modern Understanding — Double Descent
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(a) CIFAR-100. There is a peak in test error even
with no label noise.

(b) CIFAR-10. There is a “plateau” in test error
around the interpolation point with no label noise,
which develops into a peak for added label noise.

Nakkiran et al. Deep Double Descent: Where Bigger Models and More Data Hurt



Modern Understanding — Double Descent
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Decision Tree Learning: Avoiding Overfitting

Two general strategies to avoid overfitting

1. During training: create two-way instead of multi-way splits, stop if further
splitting not justified by a statistical test

2. Post-pruning: grow a large tree, then prune back some nodes
1. evaluate impact on tuning-set accuracy of pruning each node
2. greedily remove the one that most improves tuning-set accuracy



Tuning Sets

e A tuning set (a.k.a. validation set) is
e not used for primary training process (e.g. tree growing)

e but used to select among models (e.g. trees pruned to
varying degrees)

* Why can’t you use the
training set to prune?

e Why can’t you use the
test set to prune?

train test




reak & Quiz



Q2-2: Which of the following statements is TRUE?

1. If there is no noise, then there is no overfitting.
Overfitting may improve the generalization ability of a model.

3. Generalization error is monotone with respect to the
capacity/complexity of a model.

4. More training data may help preventing overfitting.



Q2-2: Which of the following statements is TRUE?

1. If thereis no noise, then there is no overfitting.
Overfitting may improve the generalization ability of a model.

3. Generalization error is monotone with respect to the
capacity/complexity of a model.

4. More training data may help preventing overfitting. -

1. We can still have false correlation that leads to overfitting.

Overfitting would undermine the generalization ability.

3. Generalization error often first decreases and then
increases as the model capacity increases.

4. Increasing training data size would help better
approximate the true distribution.

N



True or False:
In k-NN, using large k leads to over-fitting.



True or False:
In k-NN, using large k leads to over-fitting.

False!



Outline

e Evaluation: Generalization
* Train/test split, random sampling, cross validation



Accuracy of a Model

Mow can we estimate the
accuracy of a learned model?

*Typically: use a statistic 8
that is an unbiased estimator
of 8 computed over an
independent test set

E[6] =6

labeled data set

!

training set test set

!

J

f

.

learning
method

~N learned model

J

accuracy estimate




Using a Test Set

* How can we estimate the accuracy of a learned model?

*When learning a model, you should pretend that you don’t
have the test data yet

*If the test-set labels influence the learned model in any way,
accuracy estimates will not be correct, as you may have fitted
to your test set.

e Don’t train on the test set!!!



Learning Curves

*Accuracy of a method as a function of the train set size?
*Plot learning curves

Learning Curve of Californian Housing Data
0.9 ————ry —r—r—rTrrT T

0.88

Training/test set partition

» for each sample size s on learning curve . o::
* (optionally) repeat n times E o‘;s
* randomly select s instances from training set ) —
* learn model 0.74
e evaluate model on test set to determine 0.72
accuracy a 0.7} 4
* plot(s,a) or (s, avg.accuracy and error 0. gp—— “;(';O — ‘;;foo ‘ ‘L?g'ia‘t‘il‘c(;ézgm‘m?n ‘"‘x‘—i;;ooo
bars) Sample Size

Figure from Perlich et al. Journal of Machine Learning Research, 2003

What are these intervals?



Confidence Intervals

Scenario:
* For some model h, a test set S with n samples
* We have h producing r errors out of n.
* Our estimate of the error rate: error (h) = r/n

With C% probability, true error is in interval

errory(h)(1—errory(h))

n

errory(h)tz, \/

*z. depends on C, similar to a z-score




Single Train/Test Split: Limitations

1. May not have enough data for sufficiently large

training/test sets

* A larger test set gives us more reliable estimate of accuracy
(i.e. a lower variance estimate)

e But... a larger training set will be more representative of
how much data we actually have for the learning process

2. Asingle training set cannot reveal how
sensitive accuracy is to specific training
samples.



Strategy |I: Random Resampling

* Address the second issue by repeatedly randomly
partitioning the available data into training and test sets.

labeled data set

random

training sets test sets partitions

+++ - - - ++- -

+++- - - ++- -

+++- - - ++- -




Strategy I: Stratified Sampling

* When randomly selecting training or validation sets, we may want to
ensure that class proportions are maintained in each selected set

labeled data set

I o = T8 I SR
* This can be done via stratified sampling: first
stratify instances by class, then randomly select
training set instances from each class proportionally.
ettt - - - - +tt++ - - - -

validation set
+++ - -




Strategy Il: k-fold Cross Validation

labeled data set

Partition data
into k subsamples ‘

S1 52 53 S4 S5

iteration train on test on
Iteratively leave one 1 S2 83 84 S5 5
subsample out for the 2 S, S; 8, Sy s,
test set, train on the 3 s, s, S, S s,
rest

4 S, S, S; S S,

5 S, S, S, S S



Strategy Il: 5-fold Cross Validation Example

*Suppose we have 100 instances, and we want to estimate
accuracy with 5-fold cross validation

iteration train on test on correct
1 S, S, S, S, S, 11/ 20
2 S, S, S, S S, 17 1 20
3 s, S, S, S, S, 16 / 20
4 S, S, S, S S, 131720
3 S, S, S, S, S 16 / 20

accuracy = 73/100 = 73%



Strategy Il: Cross Validation Tips

10-fold cross validation is common, but smaller values folds are often
used when learning takes a lot of time

in leave-one-out cross validation, k = # instances

in stratified cross validation, stratified sampling is used when
partitioning the data

CV makes efficient use of the available data for testing

note that whenever we use multiple training sets, as in CV and random
resampling, we are evaluating a learning method (with specific choices)
as opposed to an individual learned hypothesis

You can use CV for tuning as well!



reak & Quiz



Q2-1: Are these statements true or not?
(A) The accuracy of a model is the training set accuracy, and its
estimator is the test set accuracy.

(B) An unbiased estimator 8 always equals its correspond true
parameter 6.

1. True, True

2. True, False
3. False, True
4. False, False



Q2-1: Are these statements true or not?
(A) The accuracy of a model is the training set accuracy, and its
estimator is the test set accuracy.

(B) An unbiased estimator 8 always equals its correspond true
parameter 6.

1. True, True
2. True, False
3. False, True
4

False, False - (A) The accuracy of a model is based on its true distribution;
training/test sets only approximate this.
(B) It only equals the true parameter in expectation, i.e. it’s
true in the limit of a large number of estimates. This
means there’s no systematic error.



Q2-2: Are these statements true or not?

(A) The sample size on the learning curve is the size of test set.

(B) A larger training set would provide a lower variance estimate of
the accuracy of a learned model.

1. True, True

2. True, False
3. False, True
4. False, False



Q2-2: Are these statements true or not?

(A) The sample size on the learning curve is the size of test set.

(B) A larger training set would provide a lower variance estimate of
the accuracy of a learned model.

1. True, True
2. True, False
3. False, True
4

False, False - (A) The sa.m.ple size on the learning curve is
for training set.

(B) A larger test set rather than a larger
training set does so.



Q2-3: Which of the following is NOT true?

1. Class proportions are maintained same in the
stratified sampling.

2. Inleave-one-out cross validation, the number of
partition equals to the number of instances.

3. In cross validation, we are evaluating the
performance of an individual learned hypothesis.



Q2-3: Which of the following is NOT true?

1. Class proportions are maintained same in the
stratified sampling.

2. Inleave-one-out cross validation, the number of
partition equals to the number of instances.

3. In cross validation, we are evaluating the
performance of an individual learned hypothesis.

S

In cross validation, we
are evaluating a
learning method as
opposed to a specific
individual learned
hypothesis.



Outline

e Evaluation: Metrics
* Confusion matrices, ROC curves, precision/recall



Beyond Accuracy: Confusion Matrices

*How can we understand what types of mistakes a learned

model makes?

actual class

task: activity recognition from video

bend gty 0 0
jackr 0 0
jump 0 0
pjump 0 0
run - 0 0
sidef 0 0
skipf 0 0
walk - { 0 O 3
vavellF 0 0 0 0 0 0 0 0 33 -
vave2r 0 0 0 0 0 0 0 0 0

1 1 1
bend jack jump  pjump run side skip walk wavel wave2

predicted class



Confusion Matrices: 2-Class Version

actual class

A
' N

positive negative

(
positive true positives false positives
(TP) (FP)

predicted <
class

false negatives true negatives

negative
(EN) (TN)

\

TP + TN
TP +FP+ FN+TN
FP + FN
TP+ FP+FN+TN

accuracy =

error =1 —accuracy =




Accuracy: Sufficient?

Accuracy may not be useful measure in cases where

* There is a large class skew
* |s 98% accuracy good when 97% of the instances are negative?

* There are differential misclassification costs — say, getting a
positive wrong costs more than getting a negative wrong

* Consider a medical domain in which a false positive results in an
extraneous test but a false negative results in a failure to treat a
disease



Other Metrics

actual class
A
- -~
positive negative
r o, .
positive true positives false positives
(TP) (FP)
predicted <
class negative false negatives true negatives
; (EN) (TN)
\
TP TP

true positive rate (recall) = =
actual pos TP +FN

. FP FP
false positive rate = =

actual neg TN+ FP




Suppose a classifier returns label
probabilities rather than a label.
How do you decide the label?

i.e. suppose a classifier returns Pr(Y|x) instead of Y.

* not optimal to simply take the maximum probability if
cost of FP and FN differ

* one solution: choose threshold c and output Y=True if
Pr(Y=True|x) = c else Y=False

 but how do you compare methods across thresholds?



Other Metrics: ROC Curves

*A Receiver Operating Characteristic (ROC) curve plots the
TP-rate vs. the FP-rate as a threshold on the confidence of an
instance being positive is varied

ideal point * increasing the threshold c
/ moves down along the curve
1. Alg 1 ]
o 10 « different methods can work
= better at different points
= Alg2 .~
z .
Q \ expected curve for
g random guessing
|_

False positive rate



ROC Curves: Plotting

confidence correct
instance  positive class
Ex 9.99 +
Ex 7.98 TPRE 2/5, FPR=0/5 1.0 - O
Ex1.72 - =
Ex 2.70 + v
Ex 6.65 TPRk 4/5, FPR=1/5 %
Ex10 .51 - o
Ex 3.39 - =
Ex5.24 TPRE 5/5, FPR=3/5 . 1IO
Ex4.11 - False positive rate

Ex 8.01 TPR=5/5, FPR=5/5




ROC Curves: Misclassification Cost

*The best operating point depends on relative cost of FN and
FP misclassifications

Thyroid anomaly detection

N best operating point when
FN costs 10x FP

~ best operating point when
cost of misclassifying positives and

True Positive rate
o
wn
T
1

9.4 7 negatives is equal
B- 3 B {’/’ -~
8- 2 r s A 3 g -
! 7 18 Positives
8.1 fy best operating point when
5 < FP costs 10x FN

8 B.18.28.30.46.5060.68.78.86.9 1
False Positive rate



Other Metrics: Precision and Recall

actual class
A
~— ~
positive negative
-
positive true positives false positives
(TP) (FP)
predicted <
class ecative false negatives true negatives
; (FN) (TN)
\
TP TP
recall (TP rate) = —
actual pos TP +FN
.. . .. TP TP
precision (positive predictive value) = =

predicted pos TP +FP



Other Metrics: Precision/Recall Curve

*A precision/recall curve (TP-rate): threshold on the
confidence of an instance being positive is varied

predicting patient risk for VTE

ideal point

1.0

0.8

0.6

] . C
c default precision 2
o : s
2 determined by the £ s
0 fraction of instances ;
= that are positive o Naive Beyes Mty
SVM
! seseses Filtered k-NN
r ..... - 045
— Sl e———— Random Forest
recall (TPR) 1.0 55 X e 06 ai o

Recall

Kawaler et al., Proc. of AMIA Annual Symposium, 2012



ROC vs. PR curves

Both

* Allow predictive performance to be assessed at various levels of confidence
* Assume binary classification tasks

* Sometimes summarized by calculating area under the curve

ROC curves

* Insensitive to changes in class distribution (ROC curve does not change if the
proportion of positive and negative instances in the test set are varied)

 Can identify optimal classification thresholds for tasks with differential
misclassification costs

Precision/recall curves
* Show the fraction of predictions that are false positives

* Well suited for tasks with lots of negative instances
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Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Misha Khodak,
Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos,
Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Kirthi Kandasamy, Josiah Hanna, Tengyang Xie



