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Supervised Learning: Review

Problem setting Y

*Set of possible instances :
Unknown target function f A — 3/

*Set of models (a.k.a. hypotheses) H = {h‘h X — y}

Get
*Training set of instances for unknown target function f,

(@, y W), (12, y2), .. (2™, y ™)
Goal: model h that best approximates f



Parametric models

*A way to categorize learning techniques

*Parametric: hypotheses indexed by a o
fixed-dimenional (does not increase with training
set size) parameter vector

*Learning: find parameter yielding model that
best approximates the target

*Ex: linear models, neural networks

*Nonparametric methods: e hyeH

* Model complexity increases with training set size
* eg KNN



Discriminative Models

*|ldea: hypothesis h directly predicts the label (given features)

*y = h(x) or p(y[x) = h(x)
-.But does not model p(x)

*Examples
ok-NN
edecision trees

°linear models



Generative Models

*Hypothesis h specifies a joint distribution p(x,y) for how the
labeled data was created. Recall p(x,y)=p(x)p(y]|x)
 for unsupervised learning h(x) = p(x)

*Select a hypothesis via maximum likelihood (or maximum a
posteriori)
*Ex: roll a die. Weights for each side define data generation
*Observe training data to learn hypothesis

a¥



Discriminative vs Generative

*Can define both for supervised/unsupervised learning

*k-means (discriminative-like) vs mixture-of-Gaussians (generative)

*When should we use one over the other?
*Not always obvious

*Discriminative models: /W g ol
* Often easier to optimize %_, 4__%’ ,(\'
* Targets exact performance measure | @@ ™= A

*Generative models: EY | W
*Handling missing data ’

Generative

* Generation via sampling
LearnOpenCV

*Typical examples:

Discriminative

*Discriminative: linear regression, logistic regression, SVM, many neural

networks (not all!)
*Generative: Naive Bayes, Bayesian Networks, ...




Outline

*Logistic regression
Maximum likelihood estimation
*Setup



Classification: Linear models

*How do we learn a linear separator between two classes?

Class 1

Class 0




Linear Classification: Attempt 1

*Hyperplane: solutions to HT:E = C
* note: d-1 dimensional

*So... try to use such hyperplanes as separators?
. : 1
Model: f@ (ZIZ) =0"x step function

*Predict: y=1 if QT;C > (J, y=0 otherwise ]

¢

sie. y = step(fy(x)) ’

difficult loss function to optimize!!

*Training objective:

((fo) = %Z]l :Step(fg(l‘(i))) £ y(i):

i—1




Linear Classification: Attempt 2

eLet us instead think probabilistically and learn Py (y|z) instead

*How?
*Specify the conditional distribution Pg (y|aj)
*Use maximum likelihood estimation (MLE) to get a nicer loss
*Run gradient descent (or related optimization algorithm)

step function sigmoid function
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Linear Classification: Attempt 2

eLet us instead think probabilistically and learn Py (y|z) instead

*How?
*Specify the conditional distribution P@ (y|aj)
*Use maximum likelihood estimation (MLE) to get a nicer loss
*Run gradient descent (or related optimization algorithm)

step function sigmoid function
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Likelihood Function

*Captures the probability of seeing some data as a function of
model parameters:

L(0; X) = Py(X)
*|f data is iid, we have ﬁ(@; X) — Hpe (373)
J

*Often more convenient to work with the log likelihood

*Both mathematically and for numerical stability
*Log is a monotonic + strictly increasing function



Maximum Likelihood Estimation

*For unsupervised learning, given data X, find the parameter
that maximize the likelihood / log-likelihood

0 = arg max L(0; X)

*Example: suppose we have n samples from a Bernoulli
distribution _
Pg(Xm){g r=1

1—-60 =0

then

L(0;X) = f[P(X = x;) = Qk(l _ Q)n—k

k: #samples with x=1



Maximum Likelihood: Example

*\Want to maximize likelihood w.r.t. ®

L(0; X) = f[ P(X =x;) = 0%(1 — o))"

Differentiate (use product rule) and set to 0. Get

511 —0)" Yk —nb) = (

Practice: how about maximum log-likelihood?

log L(0; X) = klogf + (n — k)log(1 — 0)
k . k n—k
- gradient=0 = i 0

n 7 .

n

°So: ML estimate is

) =



ML: Conditional Likelihood

*Similar idea, but now using conditional probabilities:
L(0;Y,X) = pg(Y|X)

|f data is iid, we have

L(6;Y, X) Hpg (y]z;)

*Now we can apply this to linear cIaSS|f|cat|on to get logistic regression.



Logistic Regression: Conditional Distribution
B 1 - exp(#)
- 1+exp(—z) 14+ exp(z)

7z« 0Tx

*Notation: 0 (2)

1

sigmoid

sigmoid

“soft” version of step function

eConditional distribution model
for logistic regression:

1
Py(y = 1|z) = U(QTm) — 7 + exp(—0Tz)



Logistic Regression: Loss

*Conditional MLE:
log likelihood(8]z'¥ | y?) = 1log Py(y'? |2\
*So

1 — N
: i (4)].,.(4)
min £( fp) = min nz_;logPe(y )

Or
1 ' 1 -
min — — E 1Og0'(9TZE(Z))—— E 10%(1—0(9T$(Z)))
n

0 n =< .



Logistic regression: Summary

*|ogistic regression = sigmoid conditional distribution + MLE

*More precisely:
*Give training data iid from some distribution D,

*Train: 1 — , ,
- — min — — (4) | (%)
min £( fp) = min nz_;logPe(y %)

*Test: output label probabilities

1
Py(y = 1|z) = o(0" z) = 1 + exp(—6T x)




Logistic Regression: Comparisons

Recall the first attempt:  /(fy) =

% )1 [S‘Jep(fe(w“))) # y("):

difficult loss function to optimize!!

. N\ 2
Another option: use the squared loss (fg (x(")) — y("))

((fo) = -

n -
7=1
this is just regular linear regression, it
works surprisingly well for classification

accuracy in practice, but has its
problems

Z(fe(fﬁ(j)) — y\))?

-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

Bishop, Pattern Recognition and Machine Learning



Logistic Regression: Beyond Binary

e\We started with this conditional distribution:

Py(y =1lz) = o(8' z) = !

1+ exp(—0Tz)

*Now let us try to extend it to multi-class classification,
y € {1, ..., k}.

e Can no longer just use one HT;B
* But we can try multiple...



Logistic Regression: Beyond Binary

elet’sset,foryinl1,2,...,k

*Note: we have several weight vectors now (one per class).
*To train, same as before (just more weight vectors).

1 — N
ST 00 Py @0
min n; og Py(y'"|z")



Cross-Entropy Loss

eDefine gM) as the one-hot vector for the ith datapoint’s label.

q;’ = Py = j|x®)
*Next, let’s let pl¥) = P, (y|x(7’ ) be our prediction distribution
(over y)

*Our loss terms can be written _— Note: only 1 term non-zero.

—log p(y Z)\a’; ) qu(z) logp(y = ]\ZI’J(Z )

7=1 J
Y

Looks like the entropy, but ...

*This is the “cross-entropy” H(q(i) | p(i)]




Cross-Entropy Loss

*This is the “cross-entropy”

H(q",p") = E, ) [log p'*)
*What are we doing when we minimize the cross-entropy?
*Recall KL divergence,

D(q"|p'") = E ;) [log p'”] — E, i) [log '
| ] | ]
| |

] ] ] ] Cross-entropy Entropy H(g"")
*Matching distributions! (fixed)




Softmax

*\We wrote

*This operation is called softmax.
*Converts a vector into a probability vector (note normalization).

|If one component in the vector a is dominant, softmax(a) is close
to the one-hot vector picking out that maximum component



Uiz



Q1: Calculate the softmax of (1, 2, 3, 4, 5):
1. (0, 0.145, 0.229, 0.290, 0.336)

2. (0.012, 0.032, 0.086, 0.234, 0.636) <(—

3. (0.636,0.234, 0.086, 0.032, 0.012)

exp(a;)

softmax(a); = > exp(a)
Jj



Q2: True or false

togistic regression is a discriminative
model because we obtain Pg(y]|x).

False! We also obtain this from
a generative model. Logistic
regression is discriminative
oecause it does not learn the
joint distribution over (x,y).
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Review: Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

0 = arg max L(0; X)

*Example: suppose we have n samples from a Bernoulli
distribution 0 1
Py(X =) = v

1—-60 =0

Then, N
L(0;X) = HP(X = x;) = Qk(l _ Q)n—k
i=1



Review: Maximum Likelihood

*For some set of data, find the parameters that maximize the
likelihood / log-likelihood

*Example: exponential distribution

pdf of Exponential(\): f(z) = \e **

Suppose X; ~ Exponential(\) for1 < < N.
Find MLE for data D = {z(W} V|

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for A.
Compute second derivative and check that it is
concave down at A\MLE,



Review: Maximum Likelihood

*Example: exponential distribution

e First write down log-likelihood of sample.

(A) = _log f(=)

= Z log(X exp(—=Az))

1=1



Review: Maximum Likelihood

*Example: exponential distribution

e Compute first derivative, set to zero, solve for A.

i) = iNlog(/\) — A Z () (1)

dA dA
N
N i
=5 220 =0 ()
o 1=1
N
> e = 6)

Zf\il 29




Another Approach: Bayesian Inference

*Let’s consider a different approach
*Need a little bit of terminology

P(E|H)P(H)
P(E)

P(H|E) =

* His the hypothesis
e Fis the evidence




Bayesian Inference Definitions

*Terminology:

E‘H)P(H) <——— Prior
P(E)

p|E) = L

*Prior: estimate of the probability without evidence



Bayesian Inference Definitions

*Terminology:

Likelihood

P(H|E) =

Likelihood: probability of evidence given a
hypothesis.
Compare to the way we defined the likelihood earlier



Bayesian Inference Definitions

*Terminology:

E|H)P(H)
P(E)

p(i|E) = 2
A

Posterior

*Posterior: probability of hypothesis given evidence.



MAP Definition

*Suppose we think of the parameters as random variables
*There is a prior P(@)

*Then, can do learning as Bayesian inference

*“Evidence” is the data P(X|6))P((9)

POIY) = =5

*Maximum a posteriori probability (MAP) estimation

MAP _ (45)
0 argmax | [ p(=10)p(9)

1=1



MAP vs ML

*\What's the difference between ML and MAP?

MLE _ (i)
0 arg mea,XHp(:E 6)

MAP _ ()
0 arg meaxgp(x 0)p(6)

*the prior!
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*The Economist

Application: Parody Detection

*The Onion

La paralizacion

Spain may be heading for its
third election in a year

All latest updates

Stubborn Socialists are blocking Mariano Rajoy from forming a centre-right government

N v Like 50 Il ¥ Tweet |

Sep 5th 2016 | MADRID | Europe

BACK in June, after Spain’s second indecisive election in six months, the general
expectation was that Mariano Rajoy, the prime minister, would swiftly form a new
government. Although his conservative People's Party (PP) did not win back the absolute
maijority it had lost in December, it remained easily the largest party, with 137 of the 350

e e A ANk f B8N el e e ol e b e e e ol LAl . oob

* ELECTION 2016 MORE ELECTION COVERAGE »

Tim Kaine Found Riding Conveyor
Belt During Factory Campaign Stop

NEWS IN BRIEF
August 23, 2016
VOL 52 ISSUE 33

Politics - Politicians -
Election 2016 - Tim Kaine

AIKEN, SC—Noting that he disappeared for over an hour during a campaign stop meet-

and-greet with workers at a Bridgestone tire manufacturing plant, sources confirmed
Tuesday that Democratic vice presidential candidate Tim Kaine was finally discovered
riding on one of the factory’s conveyor belts. “Shortly after we arrived, Tim managed to
get out of our sight, but after an extensive search of the facilities, one of our interns
found him moving down the assembly line between several radial tires,” said senior

campaign advisor Mike Henry, adding that Kaine could be seen smiling and laughing as

PR T P QP kB 1) < TR TS " 2. : e | 1 S0y L 2
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Model 0: Not-Naive Model

Generative story:
1. Flip a weighted coin (Y)

2. If heads, sample a document ID (X) from the
parody distribution

3. If tails, sample a document ID (X) from the
regular distribution

P(X,Y) = P(X|Y)P(Y)



Model 0: Not-Naive Model

Generative story:
1. Flip a weighted coin (Y)

2. If heads, roll the gray many sided die to sample a
document vector (X) from the parody distribution

3. If tails, roll the blue many sided die to sample a document
vector (X) from the regular distribution

P(Xla'“aXKaY) :P(XlavXK‘Y)P(Y)



Model 0: Not-Naive Model

Flip weighted coin

If HEADS, roll
gray die

y Xy X, X
0] 1 0] 1
1 0] 1 0]

If TAILS, roll
blue die

45



Model 0: Main Problem

How many terms are we modeling?
-Say features are binary: X; € {0,1}  esg iswordiin the document?

P(XlaaXK‘Y)

2¥ choices of feature vector, each gets its own probability...
*Exponentially big table (e.g. in vocabulary size)



Naive Bayes: Core Assumption

How do we fix this problem?
*ASSUME conditional independence of features:

P(X17°°'7XK7Y) :P(XlavXK‘Y)P(Y)

= (H P(Xk\Y)) P(Y)

k=1

*What do we gain? With binary features, get 2 entries per feature
*So, number of parameters
28 — 2k



Naive Bayes: Overall Model

Support of P(X,|¥) depends on the application

Model: Product of class prior and the event model

P(X,Y)=PY) ][ P(Xx]Y)

Training: Find the class-conditional MLE parameters:

* For prior P(Y), we find the MLE using the data.

* Foreach P(X,|Y) we condition on the data with the
corresponding class.

Prediction: Find the class that maximizes the posterior

y = argmax p(y|x)
Yy




Naive Bayes: Smoothing

*Training: empirically estimate the probabilities
* Could we just use counts to obtain the probabilities?

P(X, = i|Y) = #times X = linclassY ¢
e =HES S #examplesofclassY N

* But what if ¢, = 0? Then P(Xy = i|Y) = 0, which will make
predictions using the event model zero (= P(Y) [ [, P(Xx = i|Y)).

C; + a0 < Smoothing
parameter

N + am “——— # of classes

Solution: smooth! P (X, |Y) =



Naive Bayes: Predicting

*With conditional probabilities, how to predict?

y = argmax p(y|x) (posterior)

Y
= argmax p(x[y)p(y) (by Bayes’ rule)
Y p(x)

— argmax p(X\y)p(y)

Y



Naive Bayes Example 1: Bernoulli

Support: Binary vectors of length K
x € {0,1}%

Generative Story:

Y ~ Bernoulli(¢)
Xy ~ Bernoulli(0, v) Vk € {1,..., K}

MOdeI p¢ B(ZE y) pqS Q(x]_ 7777 CUK, y)




Training Bernoulli Naive Bayes

Recall: train (by MLE) is to find class-conditional parameters
*To find P(Y): use all the data
*For P(X | Y=y): use the data for that class

Y 1 =1)

¢ — N
0, o = S Iy =0Aay) = 1)
k.0 N () —
D iz1 Ly =0)
Op1 = S Iy = 1Az =1)

27]:\;1 [(y() = 1)
Vke{l,...,K}



Naive Bayes Example 2: Multinomial

Integer vector (word IDs)

X = |r1,T9,...,20p| Wherex,, € {1,..., K} awordid.

Generative Story:
foric {1,...,N}:
y") ~ Bernoulli(¢)
forj e {1,..., M;}:
(%)

x;’ ~ Multinomial(8,),1)

Model:
Pg.0(T;Y) Hpek (k|y)

= (¢)Y(1 — )t~ H Oy z.
1=1



Naive Bayes Example 3: Gaussian

Support: = RK

Model: Product of prior and the event model

p(mvy) :p(xla'“vxKvy)

Gaussian Naive Bayes assumes that p(xx|y) is given by
a Normal distribution. (diagonal covariance matrix)



Q2-1: Are these statements true or false?
(A) Naive Bayes assumes conditional independence of features
to decompose the joint probability into the conditional

probabilities.
(B) We use the Bayes' rule to calculate the posterior probability.

1. True, True
2. True, False
3. False, True
4. False, False




Q2-1: Are these statements true or false?

(A) Naive Bayes assumes conditional independence of features
to decompose the joint probability into the conditional
probabilities.

(B) We use the Bayes' rule to calriilate the nncterinr nrohability.

1. True, True

2. True, False .
(A) Just as we learnt in the lecture.
3 ] False rue (B) We use Bayes rule to decompose posterior
’ probability into prior probability and
4 False, False conditional probability given each class, so

that we can compute it using the estimated
parameters.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Misha Khodak,
Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos,
Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fred Sala, Tengyang Xie >



