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Supervised Learning: Review

Problem setting
•Set of possible instances 
•Unknown target function
•Set of models (a.k.a. hypotheses)

Get
•Training set of instances for unknown target function f,

Goal: model h that best approximates f
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Parametric models

•A way to categorize learning techniques
•Parametric: hypotheses indexed by a 
fixed-dimenional (does not increase with training 
set size) parameter vector

•Learning:  find parameter yielding model that 
best approximates the target
•Ex: linear models, neural networks

•Nonparametric methods:
• Model complexity increases with training set size
• eg kNN
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Discriminative Models

•Idea: hypothesis h directly predicts the label (given features)
•y = h(x) or p(y|x) = h(x)
•But does not model p(x)

•Examples

•k-NN

•decision trees

•linear models
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Generative Models

•Hypothesis h specifies a joint distribution p(x,y) for how the 
labeled data was created.   Recall p(x,y)=p(x)p(y|x)

• for unsupervised learning h(x) = p(x)

•Select a hypothesis via maximum likelihood (or maximum a 
posteriori)

•Ex: roll a die. Weights for each side define data generation
•Observe training data to learn hypothesis 
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Discriminative vs Generative

•Can define both for supervised/unsupervised learning
•k-means (discriminative-like) vs mixture-of-Gaussians (generative)

•When should we use one over the other?
•Not always obvious
•Discriminative models:

•Often easier to optimize
•Targets exact performance measure

•Generative models:
•Handling missing data
•Generation via sampling

•Typical examples:
•Discriminative: linear regression, logistic regression, SVM, many neural 
networks (not all!)

•Generative: Naïve Bayes, Bayesian Networks, …

LearnOpenCV
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Classification: Linear models

•How do we learn a linear separator between two classes?

 

Class 1

Class 0

 

 

 



Linear Classification: Attempt 1

•Hyperplane: solutions to
• note: d-1 dimensional -- d (degree of freedom) – 1 (constraint)

•So… try to use such hyperplanes as separators? 
•Model:

•Predict: y=1 if                        , y=0 otherwise

•i.e. 

•Training objective:
difficult loss function to optimize!!

step function



Linear Classification: Attempt 2

•Let us instead think probabilistically and learn                    instead  

•How?
•Specify the conditional distribution 
•Use maximum likelihood estimation (MLE) to get a nicer loss 
•Run gradient descent (or related optimization algorithm)

step function sigmoid function
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Likelihood Function

•Captures the probability of seeing some data as a function of 
model parameters:

•If data is iid, we have

•Often more convenient to work with the log likelihood
•Both mathematically and for numerical stability
•Log is a monotonic + strictly increasing function



Maximum Likelihood Estimation

•For unsupervised learning, given data X, find the parameter 
that maximize the likelihood / log-likelihood

•Example: suppose we have n samples from a Bernoulli 
distribution

  then

k: #samples with x=1



Maximum Likelihood: Example

•Want to maximize likelihood w.r.t. Θ

•Differentiate (use product rule) and set to 0. Get

•So: ML estimate is 
 



ML: Conditional Likelihood

•Similar idea, but now using conditional probabilities:

•If data is iid, we have

•Now we can apply this to linear classification to get logistic regression.



Logistic Regression: Conditional Distribution 

•Notation: 

•Conditional distribution model 
for logistic regression:

sigmoid

“soft” version of step function

 



Logistic Regression: Loss

•Conditional MLE: 

•So

Or 



Logistic regression: Summary

•logistic regression = sigmoid conditional distribution + MLE

•More precisely:
•Give training data iid from some distribution D, 
•Train: 

•Test: output label probabilities 



Logistic Regression: Comparisons

• 

difficult loss function to optimize!!

Bishop, Pattern Recognition and Machine Learning

this is just regular linear regression, it 
works surprisingly well for classification 
accuracy in practice, but has its 
problems



Logistic Regression: Beyond Binary

• 



Logistic Regression: Beyond Binary

•Let’s set, for y in 1,2,…,k

•Note: we have several weight vectors now (one per class).

•To train, same as before (just more weight vectors).



Cross-Entropy Loss
• 

Note: only 1 term non-zero.

Looks like the entropy, but …

 



Cross-Entropy Loss

•This is the “cross-entropy”

•What are we doing when we minimize the cross-entropy?

•Recall KL divergence,

•Matching distributions!
Cross-entropy Entropy H(q(i))

    (fixed)



Softmax

•We wrote

•This operation is called softmax.
•Converts a vector into a probability vector (note normalization).
•If one component in the vector a is dominant, softmax(a) is close 
to the one-hot vector picking out that maximum component



Quiz



Q1: Calculate the softmax of (1, 2, 3, 4, 5):

1. (0, 0.145, 0.229, 0.290, 0.336)

2. (0.012, 0.032, 0.086, 0.234, 0.636)

3. (0.636, 0.234, 0.086, 0.032, 0.012)

 



Q2: True or false

• 

False! We also obtain this from 
a generative model. Logistic 
regression is discriminative 
because it does not learn the 
joint distribution over (x,y).
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Review: Maximum Likelihood

•For some set of data, find the parameters that maximize the 
likelihood / log-likelihood

•Example: suppose we have n samples from a Bernoulli 
distribution

Then, 
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Review: Maximum Likelihood

•For some set of data, find the parameters that maximize the 
likelihood / log-likelihood

•Example: exponential distribution
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Review: Maximum Likelihood

•Example: exponential distribution
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Review: Maximum Likelihood

•Example: exponential distribution
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•Let’s consider a different approach
•Need a little bit of terminology

• H is the hypothesis
• E is the evidence

Another Approach: Bayesian Inference
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Bayesian Inference Definitions

•Terminology:

•Prior: estimate of the probability without evidence

Prior
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Bayesian Inference Definitions

•Terminology:

•Likelihood: probability of evidence given a 
hypothesis.
•Compare to the way we defined the likelihood earlier

Likelihood

37



Bayesian Inference Definitions

•Terminology:

•Posterior: probability of hypothesis given evidence.

Posterior
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MAP Definition

•Suppose we think of the parameters as random variables
•There is a prior 

•Then, can do learning as Bayesian inference
•“Evidence” is the data

•Maximum a posteriori probability (MAP) estimation

39



MAP vs ML

•What’s the difference between ML and MAP?

•the prior!
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Application: Parody Detection

•The Economist •The Onion
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Model 0: Not-Naïve Model

Generative story:

1. Flip a weighted coin (Y)

2. If heads, sample a document ID (X) from the 
parody distribution

3. If tails, sample a document ID (X) from the 
regular distribution
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Model 0: Not-Naïve Model

Generative story:

1. Flip a weighted coin (Y)

2. If heads, roll the gray many sided die to sample a 
document vector (X) from the parody distribution

3. If tails, roll the blue many sided die to sample a document 
vector (X) from the regular distribution
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Model 0: Not-Naïve Model
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If HEADS, roll 
gray die

Flip weighted coin

If TAILS, roll 
blue die

0 1 0 1 … 1

y x1 x2 x3 … xK

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Each side of the die 
is labeled with a 

document vector 
(e.g. [1,0,1,…,1])



Model 0: Main Problem

How many terms are we modeling?

•Say features are binary:

•2k choices of feature vector, each gets its own probability…
•Exponentially big table (e.g. in vocabulary size) 
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e.g. is word i in the document?



How do we fix this problem?

•ASSUME conditional independence of features:

•What do we gain? With binary features, get 2 entries per feature
•So, number of parameters 

Naïve Bayes: Core Assumption
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Naïve Bayes: Overall Model

Support of P(Xk|Y) depends on the application

Training: Find the class-conditional MLE parameters:
• For prior P(Y), we find the MLE using the data. 
• For each P(Xk|Y) we condition on the data with the 

corresponding class.
 Prediction: Find the class that maximizes the posterior

Model: Product of class prior and the event model
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Naïve Bayes: Smoothing

• 

Smoothing 
parameter
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# of classes



Naïve Bayes: Predicting

•With conditional probabilities, how to predict?
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Naïve Bayes Example 1: Bernoulli

Support: Binary vectors of length K

Generative Story:

Model:
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Training Bernoulli Naïve Bayes

Recall: train (by MLE) is to find class-conditional parameters

•To find P(Y): use all the data

•For P(X
i
|Y=y): use the data for that class
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Naïve Bayes Example 2: Multinomial
Integer vector (word IDs)

Generative Story:

Model:
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Naïve Bayes Example 3: Gaussian

Model: Product of prior and the event model

Support: 
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(diagonal covariance matrix)



1. True, True
2. True, False
3. False, True
4. False, False

Q2-1: Are these statements true or false?
(A) Naïve Bayes assumes conditional independence of features 
to decompose the joint probability into the conditional 
probabilities.
(B) We use the Bayes’ rule to calculate the posterior probability.



Q2-1: Are these statements true or false?
(A) Naïve Bayes assumes conditional independence of features 
to decompose the joint probability into the conditional 
probabilities.
(B) We use the Bayes’ rule to calculate the posterior probability.
1. True, True
2. True, False
3. False, True
4. False, False

(A) Just as we learnt in the lecture.
(B) We use Bayes rule to decompose posterior 

probability into prior probability and 
conditional probability given each class, so 
that we can compute it using the estimated 
parameters.



Thanks Everyone!
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