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Abstract

Many algorithms rely critically on being given a good metier their
inputs. For instance, data can often be clustered in margu4ible”
ways, and if a clustering algorithm such as K-means ingtitlls to find
one that is meaningful to a user, the only recourse may bééuser to
manually tweak the metric until sufficiently good clusters found. For
these and other applications requiring good metrics, itisirdble that
we provide a more systematic way for users to indicate what ton-
sider “similar.” For instance, we may ask them to providemegkes. In
this paper, we present an algorithm that, given examplesmlias (and,
if desired, dissimilar) pairs of points iR, learns a distance metric over
R™ that respects these relationships. Our method is basedsimgpoet-
ric learning as a convex optimization problem, which allavgsto give
efficient, local-optima-free algorithms. We also demaaistiempirically
that the learned metrics can be used to significantly impohwstering
performance.

1 Introduction

The performance of many learning and datamining algoritdeysend critically on their
being given a good metric over the input space. For instafieeeans, nearest-neighbors
classifiers and kernel algorithms such as SVMs all need tdea good metrics that reflect
reasonably well the important relationships between thia. dghis problem is particularly
acute in unsupervised settings such as clustering, anthtedeo the perennial problem of
there often being no “right” answer for clustering: If thi@gorithms are used to cluster a
set of documents, and one clusters according to the auippestother clusters according
to topic, and a third clusters according to writing style,onf to say which is the “right”
answer? Worse, if an algorithm were to have clustered by tapid if we instead wanted it
to cluster by writing style, there are relatively few systdim mechanisms for us to convey
this to a clustering algorithm, and we are often left twegldistance metrics by hand.

In this paper, we are interested in the following problemp@se a user indicates that
certain points in an input space (s&}) are considered by them to be “similar.” Can we
automatically learn a distance metric oM that respects these relationships, i.e., one that
assigns small distances between the similar pairs? Fanostin the documents example,
we might hope that, by giving it pairs of documents judgeddaitten in similar styles,

it would learn to recognize the critical features for detigrinyg style.



One important family of algorithms that (implicitly) leametrics are the unsupervised
ones that take an input dataset, and find an embedding of dnre space. This includes
algorithms such as Multidimensional Scaling (MDS) [2], dratally Linear Embedding
(LLE) [9]. One feature distinguishing our work from thesé¢hat we will learn a full metric
d: R™ x R" :— R over the input space, rather than focusing only on (findingrabed-
ding for) the points in the training set. Our learned metniest generalizes more easily to
previously unseen data. More importantly, methods such.&sdand MDS also suffer from
the “no right answer” problem: For example, if MDS finds an eahing that fails to cap-
ture the structure important to a user, it is unclear whatsyatic corrective actions would
be available. (Similar comments also apply to Principal @onents Analysis (PCA) [7].)
As in our motivating clustering example, the methods we psepcan also be used in a
pre-processing step to help any of these unsupervisedthlgsrto find better solutions.

In the supervised learning setting, for instance neareaghber classification, numerous
attempts have been made to define or learn either local oalyoétrics for classification.

In these problems, a clear-cut, supervised criterion—stfiaation error—is available and
can be optimized for. (See also [11], for a different way gienwising clustering.) This
literature is too wide to survey here, but some relevant gtesinclude [10, 5, 3, 6],
and [1] also gives a good overview of some of this work. Whiese methods often
learn good metricgor classification it is less clear whether they can be used to learn
good, general metrics fatheralgorithms such as K-means, particularly if the informatio
available is less structured than the traditional, homeges training sets expected by
them.

In the context of clustering, a promising approach was riéggg@moposed by Wagstaff et
al. [12] for clustering with similarity information. If tal that certain pairs are “similar” or
“dissimilar,” they search for a clustering that puts theikmpairs into the same, and dis-
similar pairs into different, clusters. This gives a way sing similarity side-information
to find clusters that reflect a user’s notion of meaningfustdes. But similar to MDS and
LLE, the (“instance-level”) constraints that they use dogeneralize to previously unseen
data whose similarity/dissimilarity to the training senist known. We will later discuss
this work in more detail, and also examine the effects of gifire methods we propose in
conjunction with these methods.

2 Learning Distance Metrics

Suppose we have some set of poifits}!”, C R", and are given information that certain
pairs of them are “similar”;

S: (xi,z;) €S if z; andz; are similar Q)
How can we learn a distance metid¢z, y) between points: and y that respects this;
specifically, so that “similar” points end up close to eadieo?

Consider learning a distance metric of the form

dz,y) = dale,y) = |z~ ylla = /@~ 9)TA@ ). (2)

To ensure that this be a metric—satisfying non-negativitgt the triangle inequality—
we require thatd be positive semi-definited > 0.} SettingA = I gives Euclidean
distance; if we restrictd to be diagonal, this corresponds to learning a metric in whic
the different axes are given different “weights”; more gatlg, A parameterizes a family
of Mahalanobis distances ov&"*.> Learning such a distance metric is also equivalent
to finding a rescaling of a data that replaces each powith A'/2z and applying the

Technically, this also allows pseudometrics, whikéz, 1) = 0 does not implyz = .
2Note that, but putting the original dataset through a noedr basis functiog and considering
V(d(z) — o(y)T A(p(x) — ¢(y)), non-linear distance metrics can also be learned.




standard Euclidean metric to the rescaled data; this wiér lbe useful in visualizing the
learned metrics.

A simple way of defining a criterion for the desired metric is temand that
pairs of points (z;,z;) in S have, say, small squared distance between them:
minimizes Y2, . es||®i — z;|/%. This is trivially solved withA = 0, which is not
useful, and we add the constrajy,,. . \ep ||#i — ;|[4 > 1 to ensure thatl does not
collapse the dataset into a single point. H&esan be a set of pairs of points known to be

“dissimilar” if such information is explicitly availablegtherwise, we may take it to be all
pairs not inS. This gives the optimization problem:

min 32, 4,)es |12 = 25l 3)
St D (gieyen 1T —zjlla > 1, ()
A > 0. )

The choice of the constant 1 in the right hand side of (4) igrary but not important, and
changing it to any other positive constamesults only in4 being replaced by? A. Also,
this problem has an objective that is linear in the pararseteand both of the constraints
are also easily verified to be convex. Thus, the optimizatimblem isconvex which
enables us to derive efficient, local-minima-free alganighto solve it.

We also note that, while one might consider various altéresito (4), > . . \ep ||#i —

z;||4 > 1" would not be a good choice despite its giving a simple lineamstraint. It
would result inA always being rank 1 (i.e., the data are always projected afite) 3

2.1 Thecaseof diagonal A

In the case that we want to learn a diagoAat diag(A;1, Asa, ... , Ann), We can derive
an efficient algorithm using the Newton-Raphson method.H2efi

g(A) =g(An, . Aw) = Y llmi—alh—log | D [ —aj)la
(z;,2;)€S (zs,2;)€D

It is straightforward to show that minimizing (subject toA > 0) is equivalent, up to a
multiplication of A by a positive constant, to solving the original problem (3-\&/e can
thus use Newton-Raphson to efficiently optimizé

2.2 Thecaseof full 4

In the case of learning a full matrix, the constraint thatl > 0 becomes slightly trickier

to enforce, and Newton’s method often becomes prohibitiggpensive (requiring (n°)

time to invert the Hessian over’ parameters). Using gradient descent and the idea of
iterative projections (e.g., [8]) we derive a differentaiighm for this setting.

3The proof is reminiscent of the derivation of Fisher’s lindiscriminant. Briefly, consider max-
imizing (3, .., yen ll7i — .’L’]‘Hi)/z(zi@j)es l|z: — z;||4 = trace AMp /trace AMs, where
My = Y, aper (@i — i) (@i — z;)". Decomposingd asA = "  aia] (always pos-
sible since4 = 0), this gives)", al Mpai/ ", al Msa;, which we recognize as a Rayleigh-
quotient like quantity whose solution is given by (say) s§wdvthe generalized eigenvector problem
Mpai1 = AMsa, for the principal eigenvector, and settiag= ... = a, = 0.

“To ensure thatl > 0, which is true iff the diagonal elements;; are non-negative, we actually

replace the Newton updafé ' Vg by a H~ ' Vg, wherea is a step-size parameter optimized via a
line-search to give the largest downhill step subjectfp> 0.



Iterate
Iterate
A:=argming {||A' — Al|p : A" € C1}
A:=argming {||A" — A||r : A" € Cy}
until A converges
A=A+ a(Vag(4)) v,y
until convergence

Figure 1: Gradient ascent + Iterative projection algorithifere, || - || is the Frobenius norm on
matrices (M||x = (32, 3, M7)'/?).

We pose the equivalent problem:

mjxx g(A) = Z(TZ,TJ)E'D Hw% w]HA (6)
A= 0. (8)

We will use a gradient ascent step gf4) to optimize (6), followed by the method of
iterative projections to ensure that the constraints (4) @) hold. Specifically, we will
repeatedly take a gradient stép:= A + aV 4¢(A), and then repeatedly projedt into
the setsly = {A: 3, . esll®i— z;||4 <1} andC, = {A: A = 0}. This gives the
algorithm shown in Figure .

The motivation for the specific choice of the problem forntigia (6—8) is that projecting
A onto C; or C, can be done inexpensively. Specifically, the first projecstepA :=
argming {||A’ — A||% : A" € C;} involves minimizing a quadratic objective subject to
a single linear constraint; the solution to this is easilyrfd by solving (inO(n?) time)

a sparse system of linear equations. The second projetéprostoC,, the space of all
positive-semi definite matrices, is done by first finding tiegdnalizationd = X7AX,
whereA = diag(\1, ..., A,) is a diagonal matrix ofi’'s eigenvalues and the columns of
X € R™" containsA’s corresponding eigenvectors, and takiag = X7 A’'X, where
A' = diag(max{0, A1 },...,{0,A,}). (E.Q., see [4].)

3 Experimentsand Examples

We begin by giving some examples of distance metrics leapneattificial data, and then
show how our methods can be used to improve clustering pedioce.

3.1 Examplesof learned distance metrics

Consider the data shown in Figure 2(a), which is divided tato classes (shown by the
different symbols and, where available, colors). Supplaggoints in each class are “sim-

ilar” to each other, and we are givehreflecting this> Depending on whether we learn a
diagonal or a full4, we obtain:

1.036 0 0 3.245 3.286 0.081
Adiagona1 = | 0 1007 0 |; Apn= | 3.286 3.327 0.082

0 0 0 0.081 0.082 0.002

To visualize this, we can use the fact discussed earlierl¢aaning|| - || 4 is equivalent
to finding a rescaling of the data — A'/?z, that hopefully “moves” the similar pairs

5The algorithm shown in the figure includes a small refinemieait the gradient step is taken the
direction of the projection o¥ 4 g onto the orthogonal subspacef; f, so that it will “minimally”
disrupt the constraint’,. Empirically, this modification often significantly speads convergence.

®In the experiments with synthetic dat§,was a randomly sampled 1% of all pairs of similar
points.



2-class data (original) 2-class data projection (Newton)

2-class data projection (IP)

(b)
Figure 2: (a) Original data, with the different classes daded by the different symbols (and col-
ors, where available). (b) Rescaling of data corresponthnigarned diagonal. (c) Rescaling
corresponding to full.
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Figure 3: (a) Original data. (b) Rescaling correspondinigémned diagonall. (c) Rescaling corre-
sponding to fullA.

together. Figure 2(b,c) shows the result of plottidy2z. As we see, the algorithm has
successfully brought together the similar points, whilegiag dissimilar ones apart.
Figure 3 shows a similar result for a case of three clusterssettentroids differ only
in the x and y directions. As we see in Figure 3(b), the leadiagonal metric correctly
ignores the z direction. Interestingly, in the case of afylthe algorithm finds a surprising
projection of the data onto a line that still maintains theasation of the clusters well.

3.2 Application to clustering

One application of our methods is “clustering with side mnfiation,” in which we learn
a distance metric using similarity information, and clustata using that metric. Specifi-
cally, suppose we are givet and told that each pafr:;, z;) € S meanse; andz; belong
to the same cluster. We will consider four algorithms foistéuing:

1. K-means using the default Euclidean metfi¢ — u||> between points;; and
cluster centroidg, to define distortion (and ignoring).

2. Constrained K-means: K-means but subject to pdintsz;) € S always being
assigned to the same cluster [12].

3. K-means + metric: K-means but with distortion defined gshe distance metric
l|z; — px||% learned froms.

4. Constrained K-means + metric: Constrained K-means ubiaglistance metric
learned fromS.

"This is implemented as the usual K-means, excefat;ifz;) € S, then during the step in which
points are assigned to cluster centrqigis we assign botly; andz; to clusterarg miny, (z; — pr)* +
(x; —pr)?. More generally, if we imagine drawing an edge between eaatoppoints inS, then all
the points in each resulting connected compoigeare constrained to lie in the same cluster, which

we pick to bearg ming Y-, (i — p)’.



Original 2-class data Porjected 2-class data

a
K-means: AC((:u)racy =0.4975
Constrained K-means: Accuracy = 0.5060
K-means + metric: Accuracy =1
Constrained K-means + metric: Accuracy =1

pONE

Figure 4: (a) Original dataset (b) Data scaled accordingeéwned metric. Adiagonal’s result is
shown, butAg,; gave visually indistinguishable results.)

Leté; (i = 1,...,m) be the cluster to which poinf; is assigned by an automatic clustering
algorithm, and let; be some “correct” or desired clustering of the data. Foltmp?], in
the case of 2-cluster data, we will measure how welldfgematch the:;’s according to

Accuracy= 3 MU = e} = es =)}

= 0.5m(m — 1)

wherel{-} is the indicator functionl{ True} = 1, 1{False} = 0). This is equivalent to
the probability that for two points;, z; drawn randomly from the dataset, our clustering
¢ agrees with the “true” clustering on whetherz; andz; belong to same or different
clusters

As a simple example, consider Figure 4, which shows a clingtgroblem in which the
“true clusters” (indicated by the different symbols/calam the plot) are distinguished by
their z-coordinate, but where the data in its original space seenttuster much better
according to theigy-coordinate. As shown by the accuracy scores given in thedjdnoth
K-means and constrained K-means failed to find good clusgeri But by first learning
a distance metric and then clustering according to thatiopete easily find the correct
clustering separating the true clusters from each otheyurgi5 gives another example
showing similar results.

We also applied our methods to 9 datasets from the UC Irvipesitory. Here, the “true
clustering” is given by the data’s class labels. In each, aveane experiment using “lit-
tle” side-informationS, and one with “much” side-information. The results are give
Figure 6°

We see that, in almost every problem, using a learned didgonfall metric leads to
significantly improved performance over naive K-means. bstrof the problems, using
a learned metric with constrained K-means (the 5th bar fagainalA, 6th bar for full A)
also outperforms using constrained K-means alone (4th bametimes by a very large

8In the case of manyx 2) clusters, this evaluation metric tends to give inflatedresaince
almost any clustering will correctly predict that most gaaire in different clusters. In this setting,
we therefore modified the measure averaging not eply:; drawn uniformly at random, but from
the same cluster (as determinedd®yvith chance 0.5, and from different clusters with chané& §o
that “matches” and “mis-matches” are given the same weightesults reported here used K-means
with multiple restarts, and are averages over at least 28 {i@xcept for wine, 10 trials).

S was generated by picking a random subset of all pairs of gaimaring the same class In
the case of “little” side-information, the size of the subsas chosen so that the resulting number of
resulting connected componerits. (see footnote 7) would be very roughly 90% of the size of the
original dataset. In the case of “much” side-informatidmis tas changed to 70%.



Original data Projected data

K-means: Acgu)racy =0.4993

. Constrained K-means: Accuracy = 0.5701
K-means + metric: Accuracy =1

. Constrained K-means + metric: Accuracy = 1

PwONE

Figure 5: (a) Original dataset (b) Data scaled accordingetoried metric. Aaiagonal’s result is
shown, butA¢,; gave visually indistinguishable results.)

Boston housing (N=506, C=3, d=13) ionosphere (N=351, C=2, d=34) Iris plants (N=150, C=3, d=4)
1 1 1
0.8
0.6
0.4
0.2
0 0
Kc=447 Kc=354 Kc=269 Kc=187 Kc=133 Kc=116
wine (N=168, C=3, d=12) balance (N=625, C=3, d=4) breast cancer (N=569, C=2, d=30)

0.8
0.6
0.4
0.2
0 0
Kc=153 Kc=127 Kc=548 Kc=400 Kc=482 Kc=358
soy bean (N=47, C=4, d=35) protein (N=116, C=6, d=20) diabetes (N=768, C=2, d=8)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
Kc=41 Kc=34 Kc=92 Ke=61 Kc=694 Kc=611

Figure 6: Clustering accuracy on 9 UCI datasets. In eachl péueesix bars on the left correspond to
an experiment with “little” side-informatiot¥, and the six on the right to “much” side-information.
From left to right, the six bars in each set are respectiveljné&ans, K-means- diagonal met-
ric, K-means+ full metric, Constrained K-means (C-Kmeans), C-Kmeandiagonal metric, and
C-Kmeans+ full metric. Also shown aréV: size of datasetC': number of classes/clusters; di-
mensionality of dataK.: mean number of connected components (see footnotes 7,9¢. bars
are also shown.
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Figure 7: Plots of accuracy vs. amount of side-informatidare, thez-axis gives the fraction of all
pairs of points in the same class that are randomly samplee tocluded inS.
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margin. Not surprisingly, we also see that having more sgifiesmation inS typically
leads to metrics giving better clusterings.

Figure 7 also shows two typical examples of how the qualitthefclusterings found in-
creases with the amount of side-information. For some probl(e.g., wine), our algo-
rithm learns good diagonal and full metrics quickly with prd very small amount of
side-information; for some others (e.g., protein), theagise metric, particularly the full
metric, appears harder to learn and provides less benefitomstrained K-means.

4 Conclusions

We have presented an algorithm that, given examples ofasipdlirs of points ilR™, learns

a distance metric that respects these relationships. Otimoahés based on posing metric
learning as a convex optimization problem, which allowedaislerive efficient, local-
optima free algorithms. We also showed examples of diagandlfull metrics learned
from simple artificial examples, and demonstrated on adlfand on UCI datasets how
our methods can be used to improve clustering performance.
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