CS761 Spring 2017 Homework 2 Solution

Assigned Mar. 13, due Mar. 27 before class

Instructions:

• Homeworks are to be done individually.

• Typeset your homework in latex using this file as template (e.g. use pdflatex). Show your derivations.

• Hand in the compiled pdf (not the latex file) online. Instructions will be provided. We do not accept hand-written homeworks.

• Homework will no longer be accepted once the lecture starts.

• Let the TA know if you have any questions about the solution:

Name: Xuezhou Zhang
Email: zhangxz1123@cs.wisc.edu
1. Let $X_0, X_1, \ldots, X_{M-1}$ denote a random sample of N-dimensional random vectors X_n, each of which has mean value m and covariance matrix R. Show that the sample mean

$$\hat{m}_t = \frac{1}{t+1} \sum_{n=0}^{t} X_n$$

and the sample covariance

$$S_t(\hat{m}_t) = \frac{1}{t+1} \sum_{n=0}^{t} (X_n - \hat{m}_t)(X_n - \hat{m}_t)^\top$$

may be written recursively as

$$\hat{m}_t = \frac{t}{t+1} \hat{m}_{t-1} + \frac{1}{t+1} X_t, \quad \hat{m}_0 = X_0,$$

and

$$S_t(\hat{m}_t) = Q_t - \hat{m}_t \hat{m}_t^\top,$$

where

$$Q_t = \frac{t}{t+1} Q_{t-1} + \frac{1}{t+1} X_t X_t^\top.$$

Proof:

a. By definition we have

$$\hat{m}_t = \frac{1}{t+1} \sum_{n=0}^{t} X_n = \frac{1}{t+1} \left(\sum_{n=0}^{t-1} X_n + X_t \right) = \frac{1}{t+1} (tm_{t-1} + X_t)$$

as needed.

b. Again by definition we have

$$S_t(\hat{m}_t) = \frac{1}{t+1} \sum_{n=0}^{t} (X_n - \hat{m}_t)(X_n - \hat{m}_t)^\top$$

$$= \frac{1}{t+1} \left[\sum_{n=0}^{t} X_n X_n^\top - \sum_{n=0}^{t} X_n \hat{m}_t^\top - \sum_{n=0}^{t} \hat{m}_t X_n^\top + \sum_{n=0}^{t} \hat{m}_t \hat{m}_t^\top \right]$$

$$= \frac{1}{t+1} \sum_{n=0}^{t} X_n X_n^\top - \hat{m}_t \hat{m}_t^\top$$

Let

$$Q_t = \frac{1}{t+1} \sum_{n=0}^{t} X_n X_n^\top,$$

then

$$S_t(\hat{m}_t) = Q_t - \hat{m}_t \hat{m}_t^\top,$$
and

\[Q_t = \frac{1}{t+1} \sum_{n=0}^{t} X_n X_n^\top \]

\[= \frac{1}{t+1} \left[\frac{t-1}{t} \sum_{n=0}^{t-1} X_n X_n^\top + X_t X_t^\top \right] \]

\[= \frac{t}{t+1} Q_{t-1} + \frac{1}{t+1} X_t X_t^\top. \]

Base cases are easy to verify.

2. Suppose we roll a fair 6-sided die 100 times. Let \(X \) be the sum of the outcomes. Bound \(P(|X - 350| \geq 100) \) using Chebyshev and Hoeffding, respectively.

Solution:

Let \(X_1, \ldots, X_{100} \) be the random variables representing the 100 die rolls, then they are all linearly independent, and each of them is a uniform distribution over the set \(\{1, 2, 3, 4, 5, 6\} \). Therefore, we have \(\mathbb{E}(X_i) = 3.5 \) and \(\text{Var}(X_i) = \frac{35}{12} \). \(X \) is the sum of \(X_i \)'s, and therefore we have \(\mathbb{E}(X) = 350 \) and \(\text{Var}(X) = \frac{875}{3} \). Chebyshev tells us

\[P(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2} \]

In our case, \(k = \frac{100}{\sqrt{875/3}} \), and so

\[P(|X - 350| \geq 100) \leq \frac{1}{k^2} \approx 0.029 \]

Hoeffding inequality states that if \(X_i \)'s are random variables bounded by interval \([a_i, b_i]\), then

\[P(|\bar{X} - \mathbb{E}(\bar{X})| \geq t) \leq 2 \exp \left(-\frac{2n^2t^2}{\sum (a_i - b_i)^2} \right) \]

where \(\bar{X} \) is the mean of \(X_i \)'s. Now, plug it in our problem, we get

\[P(|X - 350| \geq 100) = P(|\bar{X} - 3.5| \geq 1) \leq 2 \exp \left(-\frac{2 \times 100^2 \times 1^2}{\sum (6 - 1)^2} \right) \approx 0.000671 \]

3. Let \(X \) be the vector space of finitely nonzero sequences \(X = (x_1, x_2, \ldots, x_n, 0, 0, \ldots) \). Define the norm on \(X \) as \(\|X\| = \max |x_i| \). Let \(X_n \) be a point in \(X \) (a sequence) defined by

\[X_n = \left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, 0, 0, \ldots \right). \]
• Show that the sequence X_n is a Cauchy sequence.

Proof:
First, notice that by the definition of $\{X_n\}$, $||X_m - X_n|| = \frac{1}{m+1}$, for any $m < n \in \mathbb{N}$. Therefore, let $\epsilon > 0$ be given, let N be the smallest integer, s.t. $N > \frac{1}{\epsilon}$. Then for any $n > m > N$, $||X_m - X_n|| = \frac{1}{m+1} \leq \frac{1}{N} \leq \epsilon$. Therefore, X_n is a Cauchy sequence.

• Show that \mathcal{X} is not complete.

Proof: Since X_n is a Cauchy sequence, and the number of nonzero entries of X_n is monotonically increasing, X_n does not converge in \mathcal{X}. Therefore, \mathcal{X} is not complete.

4. Determine the range and nullspace of the following linear operators (matrices):

$$
A = \begin{bmatrix} 1 & 0 \\ 5 & 4 \\ 2 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & 1 \\ 5 & 4 & 9 \\ 2 & 4 & 6 \end{bmatrix}
$$

Solution:
The range of A is the span of its two column vector, the nullspace is $\{0\}$.
The range of B is the span of its first two column vector, as the third one is a linear combination of the first two. The nullspace is therefore the span of vector $(1,1,-1)$.

5. Let

$$
A = \begin{bmatrix} 1 & 4 & 5 & 6 \\ 6 & 7 & 2 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 48 \\ 30 \end{bmatrix}.
$$

One solution to $Ax = b$ is $x = [1, 2, 3, 4]^T$. Compute the least-squares solution using the SVD (explain how), and compare. Why was the solution chosen?

Solution:
Let the SVD of A be

$$
A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^	op \\ V_2 \end{bmatrix}.
$$

Then the linear system $Ax = b$ can be written as

$$
\begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^	op x_1 \\ V_2 x_2 \end{bmatrix} = \begin{bmatrix} U_1^	op b_1 \\ U_2^	op b_2 \end{bmatrix}.
$$

Let $\tilde{b}_1 = U_1^	op b_1, \tilde{b}_2 = U_2^	op b_2$, and $\tilde{x}_1 = V_1^	op x_1, \tilde{x}_2 = V_2^	op x_2$. Then $x = V_1 \tilde{x}_1 + V_2 \tilde{x}_2$. We also know that in SVD V_1 spans $R(A^	op)$ and V_2 spans $N(A)$. These two spaces perpendicularly decomposed the domain. As a
result, the least square solution should have zero component in the \(N(A) \) space, this implies that \(x_{ls} = V_1 \tilde{x}_1 = V_1 \Sigma_1 U_1^\top b_1 \). In our case, the least square solution is given by

\[
 x_{ls} = \begin{bmatrix} 0.54 \\ 2.40 \\ 3.09 \\ 3.73 \end{bmatrix}
\]

Comparing the norm, \(||x_{ls}|| = 9.77 \), while \(||x|| = 10.6 \).

6. Consider the following process. A probability vector \(p = (p_1, \ldots, p_d) \) is drawn from a Dirichlet distribution with parameter vector \(\alpha \). Then, a vector of category counts \(x = (x_1, \ldots, x_d) \) is drawn from a multinomial distribution with probability vector \(p \) and number of trials \(N \). Give an analytic form of \(P(x | \alpha) \).

Solution:

Since \(x \perp \alpha | p \), we have

\[
 P(x | \alpha) = \int_{\Delta^d} f_p(x) f_\alpha(p) dp = \int_{\Delta^d} \frac{N!}{x_1! \cdots x_d!} \prod_{i=1}^d p_i^{x_i} \frac{1}{B(\alpha)} \prod_{i=1}^d p_i^{\alpha_i-1} dp.
\]

7. Let \(X_1, X_2, \ldots, X_m \) be a random sample, where \(X_i \sim U(0, \theta) \) the uniform distribution.

- Show that \(\hat{\theta}_{ML} = \arg\max \theta = \max X_i \).

 Clearly \(\theta \geq \max X_i \). Now,

 \[
 \hat{\theta}_{ML} = \arg\max_{\theta \geq \max X_i} \prod_{i=1}^m p(X_i | \theta) = \arg\max_{\theta \geq \max X_i} \frac{1}{\theta^m} = \max X_i.
 \]

- Show that the density of \(\hat{\theta}_{ML} \) is \(f_\theta(x) = \frac{m}{\theta^m} x^{m-1} \).

 The CDF of \(\hat{\theta}_{ML} \) is \(F_\theta(x) = \left(\frac{x}{\theta} \right)^m \). Taking the derivative gives the expected answer.

- Find the expected value of \(\hat{\theta}_{ML} \).

 \[
 \mathbb{E}(\hat{\theta}_{ML}) = \int_0^\theta x \frac{m}{\theta^m} x^{m-1} dx = \frac{m}{m+1} \theta.
 \]

- Find the variance of \(\hat{\theta}_{ML} \).

 \[
 \text{Var}(\hat{\theta}_{ML}) = \mathbb{E}(\hat{\theta}_{ML}^2) - \mathbb{E}(\hat{\theta}_{ML})^2 = \int_0^\theta x^2 \frac{m}{\theta^m} x^{m-1} dx - \left(\frac{m}{m+1} \theta \right)^2 = \frac{m}{m+2} \theta^2 - \left(\frac{m}{m+1} \theta \right)^2.
 \]
8. Let X_1, \ldots, X_n be a sample from $N(\mu, \sigma^2)$.

- Show that the MLE of σ^2 is

$$\hat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

Proof:

The log-likelihood function is

$$L(\sigma) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

To compute the MLE, differentiate the log-likelihood function w.r.t σ:

$$L'(\sigma) = \frac{1}{2\sigma^2} \left[\frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 - n \right]$$

Setting derivative to zero gives us the expected answer.

- Show that $\hat{\sigma}^2$ has a smaller mean squared error than

$$(n - 1)^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

Proof:

Denote $S = (n - 1)^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$. Then, we can compute $E(\hat{\sigma}^2) = \frac{n-1}{n} \sigma^2$, $\text{Var}(\hat{\sigma}^2) = \frac{2(n-1)}{n^2} \sigma^4$, and $E(S) = \sigma^2$, $\text{Var}(S) = \frac{2\sigma^4}{n-1}$. Then, we have

$$\text{MSE}(\hat{\sigma}^2) = E((\hat{\sigma}^2 - \theta^2)^2) = E(\hat{\sigma}^4) - 2\theta^2 E(\hat{\sigma}^2) + \theta^4 = \frac{2n - 1}{n^2} \sigma^4.$$

Similarly,

$$\text{MSE}(S) = \frac{2\sigma^4}{n - 1}.$$

We therefore have

$$\text{MSE}(\hat{\sigma}^2) = \frac{2n - 1}{n^2} \sigma^4 < \frac{2n}{n^2} \sigma^4 = \frac{2}{n} \sigma^4 < \frac{2}{n - 1} \sigma^4 = \text{MSE}(S).$$

as needed.

9. Consider the directed graphical model in which none of the variables is observed.

```
\begin{center}
\begin{tikzpicture}
  \node (a) at (0,0) {$a$};
  \node (c) at (1,0) {$c$};
  \node (d) at (2,0) {$d$};
  \node (b) at (1,1) {$b$};
  \draw[->] (a) -- (c);
  \draw[->] (c) -- (d);
  \draw[<->] (b) -- (a);
\end{tikzpicture}
\end{center}
```
Show that \(a \perp b \mid \emptyset \) by using a probability argument. Suppose we now observe the variable \(d \). Show that in general \(a \not\perp b \mid d \) (you can use a counterexample).

a.
\[
P(a \mid b) = \frac{P(a, b)}{P(b)} = \frac{\int_{C \times D} P(a) P(b|c) P(d|c) dc \, dc}{P(b)} = P(a) P(b) = P(a).
\]
Therefore, \(a \perp b \mid \emptyset \).

b. Since
\[
P(a, b, d) = \int_C P(a) P(b|c) P(d|c) dc = \frac{P(a) P(b|c) P(c|d) dc}{P(b)} \int_C P(c|a,b) \frac{P(c|d)}{P(C)}
\]
which can not be written in a form of
\[
f(a, d)g(b, d)
\]
because of the integral term, which implies \(a \not\perp b \mid d \). Alternatively, you can simply find a counter-example.

10. Consider two discrete random variables \(x, y \in \{ A, B, C \} \). Construct a joint distribution \(p(x, y) \) with the following properties:
 - \(\hat{x} \) is the maximizer of the marginal \(p(x) \)
 - \(\hat{y} \) is the maximizer of the marginal \(p(y) \)
 - \(p(\hat{x}, \hat{y}) = 0 \).

Let \(P(A, B) = P(A, C) = P(B, A) = P(C, A) = \frac{1}{4} \), with all other combination being zero.

11. Logistic regression for \(y \in \{-1, 1\} \) is defined by
\[
p(y \mid x; w, b) = \frac{1}{1 + e^{-y(x^\top w + b)}}.
\]
Show that logistic regression is in the exponential family, that is, the probability distribution can be written in the form
\[
p(y \mid x; \tilde{w}) = \frac{1}{Z(x, \tilde{w})} e^{\phi(y, x)^\top \tilde{w}}.
\]
Note the mapping \(\phi \) depends only on \(y, x \), but not on \(w \) or \(b \).

Proof:
\[p(y \mid x; w, b) = \frac{1}{1 + e^{-y(x^\top w + b)}} = \frac{e^{y(x^\top w + b)/2}}{e^{y(x^\top w + b)/2} + e^{-(x^\top w + b)/2}} = \frac{e^{y(x^\top w + b)/2}}{e^{y(x^\top w + b)/2} + e^{-(x^\top w + b)/2}} e^{y(x^\top w + b)/2} + e^{-(x^\top w + b)/2} e^{\phi(y, x)^\top \tilde{w}} \]

where

\[\phi(y, x) = y \begin{bmatrix} x \\ 1 \end{bmatrix} \]

and

\[\tilde{w} = \begin{bmatrix} w \\ b \end{bmatrix}. \]