
CS761 Spring 2017 Homework 2 Solution

Assigned Mar. 13, due Mar. 27 before class

Instructions:

• Homeworks are to be done individually.

• Typeset your homework in latex using this file as template (e.g. use pdfla-
tex). Show your derivations.

• Hand in the compiled pdf (not the latex file) online. Instructions will be
provided. We do not accept hand-written homeworks.

• Homework will no longer be accepted once the lecture starts.

• Let the TA know if you have any questions about the solution:

Name: Xuezhou Zhang
Email: zhangxz1123@cs.wisc.edu
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1. Let X0, X1, . . . , XM−1 denote a random sample of N -dimensional random
vectors Xn, each of which has mean value m and covariance matrix R.
Show that the sample mean

m̂t =
1

t+ 1

t∑
n=0

Xn

and the sample covariance

St(m̂t) =
1

t+ 1

t∑
n=0

(Xn − m̂t)(Xn − m̂t)
>

may be written recursively as

m̂t =
t

t+ 1
m̂t−1 +

1

t+ 1
Xt, m̂0 = X0,

and
St(m̂t) = Qt − m̂tm̂

>
t ,

where

Qt =
t

t+ 1
Qt−1 +

1

t+ 1
XtX

>
t .

Proof:

a. By definition we have

m̂t =
1

t+ 1

t∑
n=0

Xn =
1

t+ 1

(
t−1∑
n=0

Xn +Xt

)
=

1

t+ 1
(tmt−1 +Xt)

as needed.

b. Again by definition we have

St(m̂t) =
1

t+ 1

t∑
n=0

(Xn − m̂t)(Xn − m̂t)
>

=
1

t+ 1

[
t∑

n=0

XnX
>
n −

t∑
n=0

Xnm̂t
> −

t∑
n=0

m̂tX
>
n +

t∑
n=0

m̂tm̂t
>

]

=
1

t+ 1

t∑
n=0

XnX
>
n − m̂tm̂t

>

Let

Qt =
1

t+ 1

t∑
n=0

XnX
>
n ,

then
St(m̂t) = Qt − m̂tm̂

>
t ,
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and

Qt =
1

t+ 1

t∑
n=0

XnX
>
n

=
1

t+ 1

[
t

t

t−1∑
n=0

XnX
>
n +XtX

>
t

]

=
t

t+ 1
Qt−1 +

1

t+ 1
XtX

>
t .

Base cases are easy to verify.

2. Suppose we roll a fair 6-sided die 100 times. Let X be the sum of the
outcomes. Bound P (|X − 350| ≥ 100) using Chebyshev and Hoeffding,
respectively.

Solution:

Let X1, ..., X100 be the random variables representing the 100 die rolls,
then they are all linearly independent, and each of them is a uniform
distribution over the set {1, 2, 3, 4, 5, 6}. Therefore, we have E(Xi) = 3.5
and Var(Xi) = 35

12 . X is the sum of Xi’s, and therefore we have E(X) =
350 and Var(X) = 875

3 . Chebyshev tells us

P(|X − µ| ≥ kσ) ≤ 1

k2

In our case, k = 100/
√

875/3, and so

P(|X − 350| ≥ 100) ≤ 1

k2
≈ 0.029

Hoeffding inequality states that if Xi’s are random variables bounded by
interval [ai, bi], then

P(|X̄ − E(X̄)| ≥ t) ≤ 2exp

(
− 2n2t2∑

(ai − bi)2

)
where X̄ is the mean of Xi’s. Now, plug it in our problem, we get

P(|X−350| ≥ 100) = P(|X̄−3.5| ≥ 1) ≤ 2exp

(
−2× 1002 × 12∑

(6− 1)2

)
≈ 0.000671

3. Let X be the vector space of finitely nonzero sequencesX = (x1, x2, . . . , xn, 0, 0, . . .).
Define the norm on X as ‖X‖ = max |xi|. Let Xn be a point in X (a se-
quence) defined by

Xn =

(
1,

1

2
,

1

3
, . . . ,

1

n
, 0, 0, . . .

)
.
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• Show that the sequence Xn is a Cauchy sequence.

Proof:

First, notice that by the definition of {Xn}, ||Xm −Xn|| = 1
m+1 , for

any m < n ∈ N. Therefore, let ε > 0 be given, let N be the smallest
integer, s.t. N > 1

ε . Then for any n > m > N , ||Xm−Xn|| = 1
m+1 ≤

1
N ≤ ε. Therefore, Xn is a Cauchy sequence.

• Show that X is not complete.

Proof: Since Xn is a Cauchy sequence, and the number of nonzero
entries of Xn is monotonically increasing, Xn does not converge in
X . Therefore, X is not complete.

4. Determine the range and nullspace of the following linear operators (ma-
trices):

A =

1 0
5 4
2 4

 B =

1 0 1
5 4 9
2 4 6


Solution:

The range of A is the span of its two column vector, the nullspace is {0}.
The range of B is the span of its first two column vector, as the third one
is a linear combination of the first two. The nullspace is therefore the span
of vector (1,1,-1).

5. Let

A =

[
1 4 5 6
6 7 2 1

]
b =

[
48
30

]
.

One solution to Ax = b is x = [1, 2, 3, 4]>. Compute the least-squares
solution using the SVD (explain how), and compare. Why was the solution
chosen?

Solution:

Let the SVD of A be

A =
[
U1 U2

] [Σ1 0
0 0

] [
V1
V2

]
.

Then the linear system Ax = b can be written as

[
U1 U2

] [Σ1 0
0 0

] [
V1
V2

]
x = b,[

Σ1 0
0 0

] [
V >1 x1
V >2 x2

]
=

[
U>1 b1
U>2 b2

]
.

Let b̃1 = U>1 b1,b̃2 = U>2 b2, and x̃1 = V >1 x1, x̃2 = V >2 x2. Then x =
V1x̃1 + V2x̃2. We also know that in SVD V1 spans R(A>) and V2 spans
N(A). These two spaces perpendicularly decomposed the domain. As a
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result, the least square solution should have zero component in the N(A)
space, this implies that xls = V1x̃1 = V1Σ1U

>
1 b1. In our case, the least

square solution is given by

xls =


0.54
2.40
3.09
3.73


Comparing the norm, ||xls|| = 9.77, while ||x|| = 10.

6. Consider the following process. A probability vector p = (p1, . . . , pd) is
drawn from a Dirichlet distribution with parameter vector α. Then, a
vector of category counts x = (x1, . . . , xd) is drawn from a multinomial
distribution with probability vector p and number of trials N . Give an
analytic form of P (x | α).

Solution:

Since x⊥α|p, we have

P(x|α) =

∫
4d

fp(x)fα(p)dp =

∫
4d

N !

x1!...xd!

d∏
i=1

pxi
i

1

B(α)

d∏
i=1

pαi−1
i dp.

7. Let X1, X2, . . . , Xm be a random sample, where Xi ∼ U(0, θ) the uniform
distribution.

• Show that θ̂ML = argmaxθ = maxXi.

Clearly θ ≥ maxXi. Now,

θ̂ML = argmaxθ≥maxXi

m∏
i=1

p(Xi|θ) = argmaxθ≥maxXi

1

θm
= maxXi.

• Show that the density of θ̂ML is fθ(x) = m
θmx

m−1.

The CDF of θ̂ML is Fθ(x) =
(
x
θ

)m
. Taking the derivative gives the

expected answer.

• Find the expected value of θ̂ML.

E(θ̂ML) =

∫ θ

0

x
m

θm
xm−1dx =

m

m+ 1
θ.

• Find the variance of θ̂ML.

Var(θ̂ML) = E(θ̂2ML)−E(θ̂ML)2 =

∫ θ

0

x2
m

θm
xm−1dx−

(
m

m+ 1
θ

)2

=
m

m+ 2
θ2−

(
m

m+ 1
θ

)2

.
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8. Let X1, . . . , Xn be a sample from N(µ, σ2).

• Show that the MLE of σ2 is

σ̂2 = n−1
n∑
i=1

(Xi − X̄)2.

Proof:

The log-likelihood function is

L(σ) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(Xi − X̄)2.

To compute the MLE, differentiate the log-likelihood function w.r.t
σ:

L′(σ) =
1

2σ2

[
1

2σ2

n∑
i=1

(Xi − X̄)2 − n

]

Setting derivative to zero gives us the expected answer.

• Show that σ̂2 has a smaller mean squared error than

(n− 1)−1
n∑
i=1

(Xi − X̄)2.

Proof:

Denote S = (n−1)−1
∑n
i=1(Xi−X̄)2. Then, we can compute E(σ̂2) =

n−1
n σ2, Var(σ̂2) = 2(n−1)σ4

n2 , and E(S) = σ2, Var(S) = 2σ4

n−1 . Then,
we have

MSE(σ̂2) = E((σ̂2 − θ2)2) = E(σ̂4)− 2θ2E(σ̂2) + θ4 =
2n− 1

n2
σ4.

Similarly,

MSE(S) =
2σ4

n− 1
.

We therefore have

MSE(σ̂2) =
2n− 1

n2
σ4 <

2n

n2
σ4 =

2

n
σ4 <

2

n− 1
σ4 = MSE(S).

as needed.

9. Consider the directed graphical model in which none of the variables is
observed.

a↘
c→ d

b↗

6



Show that a⊥b|∅ by using a probability argument. Suppose we now ob-
serve the variable d. Show that in general a 6⊥ b|d (you can use a coun-
terexample).

a.

P(a|b) =
P(a, b)

P(b)
=

∫
C×D P(a)P(b)P(c|a, b)P(d|c)dcdd

P(b)
=

P(a)P(b)

P(b)
= P(a).

Therefore, a⊥b|∅.
b. Since

P(a, b, d) =

∫
C

P(a)P(b)P(c|a, b)P(d|c)dc =
P(a)P(b)

P(d)

∫
C

P(c|a, b)P(c|d)

P(C)

which can not be written in a form of

f(a, d)g(b, d)

because of the integral term, which implies a 6⊥ b|d. Alternatively, you
can simply find a counter-example.

10. Consider two discrete random variables x, y ∈ {A,B,C}. Construct a
joint distribution p(x, y) with the following properties:

• x̂ is the maximizer of the marginal p(x)

• ŷ is the maximizer of the marginal p(y)

• p(x̂, ŷ) = 0.

Let P(A,B) = P(A,C) = P(B,A) = P(C,A) = 1
4 , with all other combina-

tion being zero.

11. Logistic regression for y ∈ {−1, 1} is defined by

p(y | x;w, b) =
1

1 + e−y(x>w+b)
.

Show that logistic regression is in the exponential family, that is, the
probability distribution can be written in the form

p(y | x; w̃) =
1

Z(x, w̃)
eφ(y,x)

>w̃.

Note the mapping φ depends only on y, x, but not on w or b.

Proof:
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p(y | x;w, b) =
1

1 + e−y(x>w+b)

=
ey(x

>w+b)/2

ey(x>w+b)/2

1

1 + e−y(x>w+b)

=
ey(x

>w+b)/2

ey(x>w+b)/2 + e−y(x>w+b)/2

=
1

e(x>w+b)/2 + e−(x>w+b)/2
ey(x

>w+b)/2

=
1

e(x>w+b)/2 + e−(x>w+b)/2
eφ(y,x)

>w̃

where

φ(y, x) = y

[
x
1

]
and

w̃ =

[
w
b

]
.
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