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Consider a parameter θ ∈ Θ.

F θ is the unobserved ground truth in machine learning. Θ is the hypothesis space (equivalently, the
parameter space) that we consider.

We observe data D = (x1, . . . , xn) sampled i.i.d from p(x; θ), the distribution parametrized by θ.
F D is a collection of iid random variables. Think of D as a particular training set.

Let θ̂ ≡ θ̂(D) be an estimator of θ based on data D.

F θ̂ refers both to the procedure for producing an estimate from D (such as maximum likelihood or
something else. This is the “learning algorithm” in machine learning), and the resulting value of this
estimate (e.g., a vector for the mean). It should be clear from context which is which.

We are going to compare different estimators.
Let a loss function L(θ, θ̂) : Θ×Θ 7→ R+ be defined. For example,

L(θ, θ̂) = (θ − θ̂)2 (1)

L(θ, θ̂) =

{
0 θ = θ̂

1 θ 6= θ̂
(2)

L(θ, θ̂) =

∫
p(x; θ) log

(
p(x; θ)

p(x; θ̂)

)
dx (3)

F The loss seems like the very basic “quality measure” between a learned parameter and the true
parameter. However, keep in mind that θ̂(D) is a random variable: it depends on the particular training set

D. Thus L(θ, θ̂) is a random variable, too.

The risk R(θ, θ̂) is the expected loss, averaged over training sets sampled from the true θ:

R(θ, θ̂) = ED[L(θ, θ̂(D))]. (4)

ED means the expectation over random training sets D.
F The risk is the “average training set” behavior of a learning algorithm when the world is θ. Trouble is,
we don’t know which θ the world is in.

Example 1 Let D = X1 ∼ N(θ, 1). Let θ̂1 = X1 and θ̂2 = 3.14. Assume squared loss. Then R(θ, θ̂1) = 1

(hint: variance), R(θ, θ̂2) = ED(θ−3.14)2 = (θ−3.14)2. Over the range of possible θ ∈ R, neither estimator
consistently dominates the other.

F In machine learning terms, we have a smart learning algorithm θ̂1 and a dumb one θ̂2. However, we are
saying that for some tasks θ ∈ (3.14− 1, 3.14 + 1), the dumb algorithm is better.

Example 2 Let X1, . . . , Xn ∼ Bernoulli(θ). Consider squared loss. Let θ̂1 =
∑
Xi

n , the sample mean. Let

θ̂2 = α+
∑
Xi

α+β+n which is the “smoothed” or regularized estimate, i.e., the posterior mean under a Beta(α, β)
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prior. Let θ̂3 = X1, the first sample. Then, R(θ, θ̂1) = V(
∑
Xi

n ) = θ(1−θ)
n and R(θ, θ̂3) = V(X1) = θ(1− θ).

So θ̂3 is inadmissible as a learning algorithm (being dominated by θ̂1). But what about θ̂2?

R(θ, θ̂2) = Eθ(θ − θ̂2)2 (5)

= Vθ(θ̂2) + (bias(θ̂2))2 (6)

=
nθ(1− θ)

(n+ α+ β)2
+

(
nθ + α

n+ α+ β
− θ
)2

(7)

It is not difficult to show that one can make θ disappear from the risk (i.e., task insensitivity) by setting

α = β =
√
n/2

with

R(θ, θ̂2) =
1

4(
√
n+ 1)2

It turns out this particular choice of α, β leads to the so-called minimax estimator θ̂2, which we will discuss
later. However, there is no dominance between θ̂1 and θ̂2 (with this choice of α, β) as the figure below shows:
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F So, which learning algorithm (estimator) is better depends on your task (θ). This is definitely nasty and
unsatisfactory. Like many before us, we will define-away the nastiness.

The maximum risk is
Rmax(θ̂) = sup

θ
R(θ, θ̂) (8)

F In example 2, Rmax(θ̂1) = 1/(4n) > Rmax(θ̂2). However, as the figure shows, when n is large θ1 is better
except in a small region around θ = 0.5.

The Bayes risk under prior f(θ) is

RBayesf (θ̂) =

∫
R(θ, θ̂)f(θ)dθ. (9)

F There is no subjectivity in the maximum risk. There might be subjectivity in the Bayes risk depending on
how the prior f over possible worlds is chosen.
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Accordingly, two different criteria to define “the best estimator” is the Bayes rule and the minimax rule,
respectively. An estimator θ̂Bayes is a Bayes rule with respect to the prior f if

θ̂Bayes = arg inf
θ̂

∫
R(θ, θ̂)f(θ)dθ, (10)

where the infimum is over all estimators θ̂.
F The Bayes rule does well in typical worlds overall. This requires a notation of what is typical, as defined
by the prior f . It may not want to guard against a catastrophic world, as long as the chance of catastrophe
is tiny.

An estimator θ̂minimax that minimizes the maximum risk is a minimax rule:

θ̂minimax = arg inf
θ̂

sup
θ
R(θ, θ̂), (11)

where again the infimum is over all estimators θ̂.
F The minimax rule is obsessed with guarding against the worst possible world.

We list the following theorems without proof. For details see AoS p.197.
Theorem 1 Let f(θ) be a prior, D a sample, and f(θ | D) the corresponding posterior. If L(θ, θ̂) = (θ− θ̂)2
then the Bayes rule is the posterior mean:

θ̂Bayes(D) =

∫
θf(θ | D)dθ. (12)

If L(θ, θ̂) = |θ − θ̂| then the Bayes rule is the posterior median. If L(θ, θ̂) is zero-one loss then the Bayes
rule is the posterior mode.

F The Bayes rule is a point estimate, not a Bayesian approach.

Theorem 2 Suppose that θ̂ is the Bayes rule with respect to some prior f . Suppose further that θ̂ has a
constant risk: R(θ, θ̂) = c for all θ ∈ Θ. Then θ̂ is minimax.

Example 3 In example 2 we made the choice α = β =
√
n/2 so that the risk R(θ, θ̂2) = 1

4(
√
n+1)2

is

a constant. Also, θ̂2 is the posterior mean and hence by Theorem 1 is a Bayes rule under the prior
Beta(

√
n/2,

√
n/2). Putting them together, by Theorem 2 θ̂2 is minimax.


