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Consider a parameter 6 € O.

* 0 is the unobserved ground truth in machine learning. © is the hypothesis space (equivalently, the
parameter space) that we consider.

We observe data D = (z1,...,2,) sampled i.i.d from p(x;8), the distribution parametrized by 6.
% D is a collection of 1id random variables. Think of D as a particular training set.

Let 6 = 6(D) be an estimator of 6 based on data D.
* 0 refers both to the procedure for producing an estimate from D (such as maximum likelihood or
something else. This is the “learning algorithm” in machine learning), and the resulting value of this
estimate (e.g., a vector for the mean). It should be clear from context which is which.

We are going to compare different estimators.
Let a loss function L(6,0) : © x © — R be defined. For example,

LO,0) = (0—0)? A (1)
L0,0) = {(1) z;z (2)

L(0,6) = /p(:z:;@) log (igg;) da (3)

% The loss seems like the very basic “quality measure” between a learned parameter and the true
parameter. However, keep in mind that 0(D) is a random variable: it depends on the particular training set
D. Thus L(8,0) is a random variable, too.

The risk R(0, é) is the expected loss, averaged over training sets sampled from the true 6:

R(0,0) =Ep[L(0,0(D))]. (4)
Ep means the expectation over random training sets D.

% The risk is the “average training set” behavior of a learning algorithm when the world is 6. Trouble is,
we don’t know which 6 the world is in.

Example 1 Let D = X; ~ N(0,1). Let 0, = X, and 0y = 3.14. Assume squared loss. Then R(@,él) =1

(hint: variance), R(0,05) = Ep(0 —3.14)% = (0 — 3.14)2. Over the range of possible 6 € R, neither estimator
consistently dominates the other.

% In machine learning terms, we have a smart learning algorithm 6, and a dumb one 5. However, we are
saying that for some tasks 0 € (3.14 — 1,3.14 4+ 1), the dumb algorithm is better.

Example 2 Let Xi,...,X,, ~ Bernoulli(0). Consider squared loss. Let 6, = 2. X, , the sample mean. Let

n
0y = O;:r%:; which is the “smoothed” or reqularized estimate, i.e., the posterior mean under a Beta(a, 3)
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prior. Let 03 = X1, the first sample. Then, R(6,60,) = V(ZTX) = 0(1,7;9) and R(0,03) = V(X)) = 0(1 —6).
So O3 is inadmissible as a learning algorithm (being dominated by él) But what about 62

R(0,05) = Eg(0 —6y)> (5)
= Vy(by) + (bias(62))? (6)
~ nf(1-10) nd+a 2
a (n+a+6)2+<n+a+6 6) 0

It is not difficult to show that one can make 0 disappear from the risk (i.e., task insensitivity) by setting
o=f=/n/2
with ) )
RO.0:) = g

It turns out this particular choice of a, B leads to the so-called minimaz estimator 92, which we will discuss
later. However, there is no dominance between 01 and 92 (with this choice of a, §) as the figure below shows:
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* So, which learning algorithm (estimator) is better depends on your task (0). This is definitely nasty and
unsatisfactory. Like many before us, we will define-away the nastiness.

The mazimum risk is

R™e*(f) = sup (6, ) (8)

* In example@ R™ax () = 1/(4n) > R™=(f,). However, as the figure shows, when n is large 0y is better
except in a small region around 0 = 0.5.

The Bayes risk under prior f(9) is
R7™(0 / R(0.0)f (9)

% There is no subjectivity in the mazimum risk. There might be subjectivity in the Bayes risk depending on
how the prior [ over possible worlds is chosen.
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Accordingly, two different criteria to define “the best estimator” is the Bayes rule and the minimax rule,
respectively. An estimator #5?¢ is a Bayes rule with respect to the prior f if

gBwes — arg inf / R(6,0)f(0)do, (10)
0

where the infimum is over all estimators .

% The Bayes rule does well in typical worlds overall. This requires a notation of what is typical, as defined
by the prior f. It may not want to guard against a catastrophic world, as long as the chance of catastrophe
s tiny.

An estimator ™™™ that minimizes the maximum risk is a minimaz rule:

gmimimar — areinf sup R(6, 0), (11)
0 0

where again the infimum is over all estimators 6.
% The minimax rule is obsessed with guarding against the worst possible world.

We list the following theorems without proof. For details see AoS p.197. . .
Theorem 1 Let f(0) be a prior, D a sample, and f(6 | D) the corresponding posterior. If L(6,6) = (0 —60)?
then the Bayes rule is the posterior mean:

§Bwes (D) = / 0f(6 | D)do. (12)

If L(6,6) = |0 — 0| then the Bayes rule is the posterior median. If L(0,0) is zero-one loss then the Bayes
rule is the posterior mode.

% The Bayes rule is a point estimate, not a Bayesian approach.

Theorem 2 Suppose that 0 is the Bayes rule with respect to some prior f. Suppose further that 0 has a
constant risk: R(0,0) = ¢ for all § € ©. Then 0 is minimaxz.

Example 3 In emample@ we made the choice « = = /n/2 so that the risk R(G,ég) = m is

a constant. Also, ég is the posterior mean and hence by Theorem |1| is a Bayes rule under the prior
Beta(y/n/2,+/n/2). Putting them together, by Theorem 05 is minimaz.



