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1 The Maximum Entropy Principle

Consider the maximum entropy problem: Given iid items x1, . . . ,xn ∼ p∗, let

µ̂j ≡
1

n

n∑
i=1

φj(xi), (1)

where φj : X 7→ R is some function for j = 1 . . . d. The value µ̂j is the empirical expectation of φj .
Can we recover p∗ from µ̂1 . . . µ̂d? Consider density p absolutely continuous w.r.t. a base measure ν,

which usually is the counting measure for probability mass function p, or the Lebesgue measure on R for
continuous p. We say p is consistent with the data, if

Ep[φj(x)] ≡
∫
X
φj(x)p(x)ν(dx) = µ̂j for j ∈ {1 . . . d}. (2)

In general (when d is small), there will be many distributions that are consistent with the data. The
maximum entropy principle is to pick the distribution

p̂ = argmaxp

∫
X
−p(x) log p(x)ν(dx) (3)

s.t. Ep[φj(x)] = µ̂j for all j = 1 . . . d. (4)

On one hand, there is no guarantee that p̂ = p∗. On the other hand, p̂ has a very interesting form:

p̂(x) ∝ exp

 d∑
j=1

θjφj(x)

 (5)

with parameters θj ∈ R.

2 Exponential Families

The solution above is in the so called exponential families. Formally, let φ = (φ1, . . . , φd)
> be d sufficient

statistics, where φi : X 7→ R. Note X here in general is a high dimensional object itself, corresponding
to all the nodes in a Graphical model. Let θ = (θ1, . . . , θd)

> be an associated canonical parameters. The
exponential family is a family of probability densities:

pθ(x) = exp
(
θ>φ(x)−A(θ)

)
(6)

F The key is the linear interaction (inner product) between parameters θ and sufficient statistics φ.

A is the log partition function

A(θ) = log

∫
exp

(
θ>φ(x)

)
ν(dx). (7)

F A = logZ.
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Define
Ω = {θ ∈ Rd | A(θ) <∞} (8)

i.e., those parameters for which the density is normalizable. A regular exponential family is where Ω is an
open set. A minimal exponential family is where the φ’s are linearly independent, namely there does not
exist a nonzero α ∈ Rd such that α>φ(x) = constant for all x. If an exponential family is not minimal, it is
called overcomplete. Both minimal and overcomplete representations are useful.
Example 1 (Bernoulli) Let p(x) = βx(1 − β)1−x for x ∈ {0, 1} and β ∈ (0, 1). Although it does not look
like an exponential family, one can equivalently express the density as

p(x) = exp (x log β + (1− x) log(1− β)) (9)

= exp (xθ − log(1 + exp(θ))) , (10)

where θ = log β
1−β . Note (9) is in exponential family form with φ1(x) = x, φ2(x) = 1 − x, θ1 = log β, θ2 =

log(1 − β), and A(θ) = 0. Further note that α1 = α2 = 1 makes α>φ(x) = 1 for all x, thus (9) is
an overcomplete representation. In contrast, (10) is a minimal exponential family with φ(x) = x, θ =
log β

1−β , A(θ) = log(1 + exp(θ)).

Many standard distributions (e.g., Gaussian, exponential, Poisson, Beta) are in the exponential family,
see standard textbooks for details. Not all familiar distributions are in the exponential family. For example,
the Laplace distribution with unknown mean cannot be written as an exponential family (thanks Vincent
Tan for supplying a proof).

Example 2 (Ising Model) Let G = (V,E) be an undirected graph. Each node s ∈ V is associated with a
binary random variable xs ∈ {0, 1}. The Ising model is defined to be

pθ(x) = exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt −A(θ)

 . (11)

The sufficient statistics are d = |V |+|E| dimensional: φ(x) = (. . . xs . . . xst . . .)
>. This is a regular (Ω = Rd),

minimal exponential family.

Example 3 (Potts Model) Similar to Ising model but generalizing xs ∈ {0, . . . , r − 1}. Let indicator
functions fsj(x) = 1 if xs = j and 0 otherwise, and fstjk(x) = 1 if xs = j ∧ xt = k, and 0 otherwise. The
Potts model is defined to be

pθ(x) = exp

∑
sj

θsjfsj(x) +
∑
stjk

θstjkfstjk(x)−A(θ)

 . (12)

Now d = r|V | + r2|E|. This is regular but overcomplete, because
∑r−1
j=0 θsj(x) = 1 for any s ∈ V and all x.

The Potts model is a special case where the parameters are tied: θstkk = α, and θstjk = β for j 6= k.

3 Mean Parametrization and Marginal Polytopes

Let p be any density (not necessarily in exponential family). Given sufficient statistics φ, the mean parameters
µ = (µ1, . . . , µd)

> is defined as

µi = Ep[φi(x)] =

∫
φi(x)p(x)ν(dx). (13)

Consider the set of mean parameters realized by any distribution (not necessarily exponential family):

M = {µ ∈ Rd | ∃p s.t. Ep[φ(x)] = µ}. (14)
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Example 4 (The First Two Moments) Let φ1(x) = x, φ2(x) = x2. For any p (NB not necessarily
Gaussian), the mean parameters µ = (µ1, µ2) = (E(x),E(x2))>. Since V(x) = E(x2)− E2(x) = µ2 − µ2

1 ≥ 0
for any p, we see that M is not R2 but rather the subset defined by µ1 ∈ R, µ2 ≥ µ2

1.

F It is helpful to think about p = uniform(−a, a).

M is a convex subset of Rd, since if µ(1), µ(2) ∈M there must exist p(1), p(2), and the convex combinations
of p(1), p(2) realizes the convex combinations of µ(1), µ(2).

The marginal polytope is defined for any graphical model with multinomial random variables xs ∈
{0, 1, . . . , r − 1} (this can be generalizes so different xs have different rs). Consider the indicator func-
tions defined in Example 3, which we call the standard overcomplete representation. The mean parameters
has an intuitive interpretation:

µsj = Ep[fsj(x)] = p(xs = j) (node marginals) (15)

µstjk = Ep[fstjk(x)] = p(xs = j, xt = k) (edge marginals) (16)

Furthermore, because

M = {µ ∈ Rd | µ =
∑
x

φ(x)p(x) for some p} (17)

it is easy to see thatM = conv{φ(x),∀x}, i.e., the convex hull of point mass distributions that put mass on
a single x. This convex hall is called the marginal polytope.
Example 5 (The Marginal Polytope of a Tiny Ising Model) Consider a tiny Ising model with two
nodes x1, x2 ∈ {0, 1} and an edge between them. The Ising model minimal representation is φ(x1, x2) =
(x1, x2, x1x2)>. Note that there are only 4 different x = (x1, x2). Therefore, the marginal polytope is defined
by the convex hull of

M = conv{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, (18)

which is a polytope inside the unit cube. The three coordinates can be interpreted as µ1 ≡ Ep[x1 = 1],
µ2 ≡ Ep[x2 = 1], µ12 ≡ Ep[x1 = x2 = 1].

4 The Log Partition Function A

For any regular exponential family, A(θ) is convex in θ. It is strictly convex:

A(λθ1 + (1− λ)θ2) < λA(θ1) + (1− λ)A(θ2), ∀λ ∈ (0, 1), θ1 6= θ2, (19)

if the representation is minimal.
The gradient of A has a special property:

∂A(θ)

∂θi
= Eθ[φi(x)], (20)

and therefore ∇A = µ the mean parameters of pθ. This can be viewed as a forward mapping from θ to µ.

F Note that this includes the inference problem (e.g., node marginals), and therefore computing the
forward mapping would not be easy.

Recall that M is defined by all distributions p, not limited to exponential family. One might therefore
think that ∇A only covers a subset of M. Remarkably, there are two interesting properties:
• ∇A : Ω 7→ M is one-to-one iff the exponential representation is minimal.

• For minimal representation, ∇A is onto the interior M0 of M. For each µ ∈ M0, there exists some
θ(µ) ∈ Ω such that Eθ(µ)[φ(x)] = µ.

Because ∇A covers M0, and because the exponential family is a strict subset of all distributions, each
µ is realized by other distributions not in the exponential family. Among all distributions realizing µ, pθ(µ)

has the maximum entropy.
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5 Conjugate Duality

The conjugate dual function A∗ to A is defined as

A∗(µ) = sup
θ∈Ω

θ>µ−A(θ). (21)

Such definition, where a quantity is expressed as the solution to an optimization problem, is called a varia-
tional definition.

The dual function is closely related to entropy. For any µ ∈ M0, let θ(µ) be the unique canonical
parameter satisfying the dual matching condition:

Eθ(µ)[φ(x)] = ∇A(θ(µ)) = µ. (22)

A∗ takes the form

A∗(µ) =

{
−H(pθ(µ)) µ ∈M0

∞ µ /∈ M̄,
(23)

where M̄ is the closure ofM. For any boundary point µ ∈ M̄\M0 we have A∗(µ) = limn→∞A∗(µn) taken
over any sequence {µn} ⊂ M0 converging to µ.

The fact that A∗(µ) =∞ if µ /∈ M̄ means that optimizing A∗ only needs to be carried over M.
The dual of the dual gives back A:

A(θ) = sup
µ∈M

µ>θ −A∗(µ). (24)

For all θ ∈ Ω, the supremum is attained uniquely at the µ ∈M0 by the moment matching conditions

µ = Eθ[φ(x)]. (25)

F This is a very important observation. It is the foundation of variational inference. Do you want to
compute the marginals? Note they are the mean parameters under standard overcomplete representation.
Do you want to compute the mean parameters? Note by (25) they are the solution to optimization
problem (24). That is, even if you don’t care about A(θ), solving supµ∈M µ>θ −A∗(µ) will give you the
mean parameter µ corresponding to θ, hence solving the inference problem associated with pθ.

Example 6 (Conjugate Duality for Bernoulli) Recall the minimal exponential family for Bernoulli with
φ(x) = x,A(θ) = log(1 + exp(θ)),Ω = R. By definition

A∗(µ) = sup
θ∈R

θµ− log(1 + exp(θ)). (26)

Taking derivatives and solve, for µ ∈ (0, 1) one arrives at

A∗(µ) = µ logµ+ (1− µ) log(1− µ). (27)
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