
CS761 Spring 2013 Advanced Machine Learning

Graphical Models

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

1 Directed, Undirected, Factor Graphs

In directed graphs, a directed cycle is a sequence s1 → s2 → . . . sk → s1. A directed acyclic graph (DAG) is
a graph in which every edge is directed and without directed cycle. A directed graphical model (aka Bayesian
Network) on a DAG is a family of probability distributions that factorize as follows:

p(x1, . . . , xm) =
∏
s∈V

p(xs | xπ(s)), (1)

where V is the vertex set of the DAG, and π(s) is the parent set of s in the DAG. The conditionals p(xs | xπ(s))
are also known as the conditional probability distributions (CPDs) or conditional probability tables (CPTs,
for discrete random variables).

In undirected graphs, a clique C is a fully connected subset of V : s, t ∈ C ⇒ (s, t) ∈ E where E is the
edge set. Let ψC be a nonnegative potential function defined over C. An undirected graphical model (aka
Markov Random Field) on the graph is a family of probability distributions that factorize as follows:

p(x1, . . . , xm) =
1

Z

∏
C

ψC(xC), (2)

where Z is the normalization factor and xC is the set of nodes involved in C. A clique C is maximal if it is
not contained in a larger clique.

Both directed and undirected graphical models can be unified as factor graphs. A factor denotes a multi-
parents-single-child neighborhood in the former case, or a clique in the latter case. A vertex x connects to
all the factor nodes it participates in.

One subtlety (and great success) of graphical models is the relationship between conditional independence
and graph structure. For undirected graphical models, the family (2) has the following properties: ∀ disjoint
A,B,C ⊂ V , xA is conditionally independent of xB given xC if every path from A to B goes through C.
For directed graphical models, a similar d-separation property holds.

So far, a graphical model is a family of distributions. However, we will also use the term to refer to a
particular distribution when the CPDs or the potential functions are specified.

The study of graphical models is focused on solving the inference problems. Given a distribution p
defined by a graphical model, inference problems include

• Computing the marginal distribution p(xA) over A ⊂ V

• Computing the conditional distribution p(xA | xB), often A ∪B ⊂ V

• Computing the mode arg maxx p(x).

2 Case Study: Latent Dirichlet Allocation

F Demo: lda.ppt

1

Graphical Models 2

Latent Dirichlet Allocation (LDA) assumes that each document is a mixture of multiple topics, and each
document can have different topics weights. LDA is a full generative model and readily generalizes to unseen
documents. The LDA generative process is the following.

1. Sample K multinomial distributions (each of size V) φ1:K from a Dirichlet distribution Dir(β), these
are the topics. Note β is a parameter vector of length V .

2. For each document

(a) Sample a topic multinomial (of size K) θ from a Dirichlet distribution Dir(α).

(b) For each word position

i. Sample topic index z ∼ θ
ii. Sample a word from the topic w ∼ φz

The observation is the document collection w1:n. The parameters are α and β. The other parameters z, φ
and θ are hidden variables that will be marginalized out.

The probability of a topic multinomial φ drawn from Dir(β) is

p(φ|β) =
Γ(
∑V
i=1 βi)∏V

i=1 Γ(βi)

V∏
i=1

φβi−1
i . (3)

The probability of drawing the K topic multinomials are

p(φ1:K |β) =

K∏
j=1

p(φj |β). (4)

Similarly,

p(θ|α) =
Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)

K∏
i=1

θαi−1
i . (5)

Let p(z|θ) and p(w|z, φ) = p(w|φz) be the corresponding multinomial probabilities. The probability of
generating the words w1:N for a single document, given θ, φ is

N∏
n=1

K∑
zn=1

p(zn|θ)p(wn|zn, φ), (6)

where we marginalize out z for each word position. Putting things together, the probability of a single
document, after marginalizing out all hidden variables, is

p(w|α, β) =

∫
φ1:K

∫
θ

p(φ1:K |β)p(θ|α)

(
N∏
n=1

K∑
zn=1

p(zn|θ)p(wn|zn, φ)

)
dθdφ1:K . (7)

Finally, the probability of a document collection w(1), . . . , w(M) is

p(w(1), . . . , w(M)|α, β) =

M∏
d=1

p(wd|α, β). (8)

The typical inference problem for LDA is the following: Fixing the Dirichlet parameters α, β, given a
document collection, compute the conditional distribution p(φ, θ | α, β, w), or find arg maxφ,θ,z p(φ, θ, z |
α, β, w).

Graphical Models 3

3 Belief Propagation: Sum-Product and Max-Sum Algorithms

3.1 The Sum-Product Algorithm

The sum-product algorithm is also known as belief propagation. It can compute the marginals of all nodes
efficiently and exactly, if the factor graph is a tree (i.e., if there is only one path between any two nodes).
The algorithm involves passing messages on the factor graph. A message is a vector of length K, where K
is the number of possible states a node can take. It is an un-normalized ‘belief’.

There are two types of messages:

1. A message from a factor node f to a variable node x, denoted as µf→x. Note it is a vector of length
K, and we write the x-th element (a slight abuse of notation, x = 1 . . .K) as µf→x(x).

2. A message from a variable node x to a factor node f , denoted as µx→f . It is also a vector of length
K, with elements µx→f (x).

The messages are defined recursively. In particular, consider a factor fs that involves (connects to) a
particular variable x. Denote the other variables involved in fs by x1:M . We have

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM)

M∏
m=1

µxm→fs(xm), (9)

and
µxm→fs(xm) =

∏
f∈ne(xm)\fs

µf→xm
(xm), (10)

where ne(xm)\fs is the set of factors connected to xm, excluding fs.
The recursion is initialized as follows. Since we assumed the factor graph is a tree, we can pick an

arbitrary node and call it the root. This defines all the leaf nodes, which we start all the messages. If a leaf
is a variable node x, its message to a factor node f is

µx→f (x) = 1. (11)

If a leaf is a factor node f , its message to a variable node x is

µf→x(x) = f(x). (12)

A node (factor or variable) can send out a message if all the necessary incoming messages have arrived. This
will eventually happen for tree structured factor graph.

Once all messages have been sent, one can compute the desired marginal probabilities as

p(x) ∝
∏

f∈ne(x)

µf→x(x). (13)

One can also compute the marginal of the set of variables xs involved in a factor fs

p(xs) ∝ fs(xs)
∏

x∈ne(f)

µx→f (x). (14)

If a variable x is observed x = v, it is a constant in all neighboring factors. Its message µx→f (x) is
set to zero for all x 6= v. Alternatively, we can eliminate observed nodes by absorbing them (with their
observed constant values) into the corresponding factors. Let Xo be the set of observed variables. With this
modification, we get the joint probability (NB. not the conditional p(x|Xo)) of a single node x and all the
observed nodes when we multiply the incoming messages to x:

p(x,Xo) ∝
∏

f∈ne(x)

µf→x(x). (15)

Graphical Models 4

The conditional is easily obtained by normalization afterward

p(x|Xo) =
p(x,Xo)∑
x′ p(x′, Xo)

. (16)

When the factor graph contains loops (not a tree), there is no longer guarantee that the algorithm will
even converge. However, people find in practice that it still works quite well. This way of applying the
sum-product algorithm is known as loopy belief propagation (loopy BP).

3.2 The Max-Sum Algorithm

Sometimes it is important to know the ‘best states’ z1:N corresponding to the observation x1:N . There are
at least two senses of ‘best’:

1. With the sum-product algorithm we can compute the marginal p(zn|x1:N) for each node. We can define
‘best’ to be the state with the highest marginal probability

z∗n = arg max
k

p(zn = k|x1:N), (17)

and we will have a set of most likely states z∗1:N . Each time step is the best individual, however z∗1:N as
a whole may not be the most likely state configuration. In fact it can even be an invalid configuration
with zero probability, depending on the model!

2. The alternative is to find
z∗1:N = arg max

z1:N
p(z1:N |x1:N). (18)

It finds the most likely state configuration as a whole. The max-sum algorithm addresses this problem
efficiently.

We first modify the sum-product algorithm to obtain the max-product algorithm. The idea is very simple:
replace

∑
with max in the messages. In fact only factor-to-variable messages are affected:

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM)

M∏
m=1

µxm→fs(xm) (19)

µxm→fs(xm) =
∏

f∈ne(xm)\fs

µf→xm
(xm) (20)

µxleaf→f
(x) = 1 (21)

µfleaf→x
(x) = f(x). (22)

As before, we specify an arbitrary variable node x as the root, and pass messages from leaves until they
reach the root. At the root, we multiply all incoming messages to obtain the maximum probability

pmax = max
x

 ∏
f∈ne(x)

µf→x(x)

 . (23)

This is the probability of the most likely state configuration. But we have not specified how to identify
the configuration itself. Note unlike the sum-product algorithm, we do not pass messages back from root
to leaves. Instead, we keep back pointers whenever we perform the max operation. In particular, when we
create the message

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM)

M∏
m=1

µxm→fs(xm), (24)

Graphical Models 5

for each x value, we separately create M pointers back to the values of x1, . . . , xM that achieve the maximum.
When at the root, we back trace the pointers from the value x that achieve pmax. This eventually gives us
the complete most likely state configuration.

The max-sum algorithm is equivalent to the max-product algorithm, but work in log space, to avoid
potential underflow problem. In particular, the messages are

µfs→x(x) = max
x1

. . .max
xM

log fs(x, x1, . . . , xM) +

M∑
m=1

µxm→fs(xm) (25)

µxm→fs(xm) =
∑

f∈ne(xm)\fs

µf→xm(xm) (26)

µxleaf→f
(x) = 0 (27)

µfleaf→x
(x) = log f(x). (28)

When at the root,

log pmax = max
x

 ∑
f∈ne(x)

µf→x(x)

 . (29)

The back pointers are the same. The max-product or max-sum algorithm, when applied to HMMs, is known
as the Viterbi algorithm.

F BPexample.pdf

4 The Mean Field Algorithm

For concreteness, consider the Ising model where the random variables x take values in {0, 1}. The density
is

pθ(x) =
1

Z
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

 (30)

Consider Gibbs sampling on this graphical model. Fixing values at all nodes except xs, the Gibbs sampler
assigns value 0 or 1 to xs according to the conditional probability p(xs | x−s) = p(xs | xN(s)), where N(s) is
the set of neighboring nodes of s and the equation holds because of the Markov property. It is easy to see
that the Gibbs sampling distribution is

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑
t∈N(s) θstxt)) + 1

. (31)

In Gibbs sampling, one would draw a new binary value for xs based on the above equation. Departing
from Gibbs sampling, we look at a continuous variable µs (the estimated marginal p(xs = 1)) with a similar
update

µs ←
1

exp(−(θs +
∑
t∈N(s) θstµt)) + 1

. (32)

The µ’s are updated iteratively, too. This is known as the mean field algorithm for the Ising model.

References

[1] Martin J Wainwright and Michael I Jordan. Graphical Models, Exponential Families, and Variational
Inference. Now Publishers Inc., Hanover, MA, USA, 2008.

	Directed, Undirected, Factor Graphs
	Case Study: Latent Dirichlet Allocation
	Belief Propagation: Sum-Product and Max-Sum Algorithms
	The Sum-Product Algorithm
	The Max-Sum Algorithm

	The Mean Field Algorithm

