
CS761 Spring 2013 Advanced Machine Learning

Nonparametric Density Estimation and Regression

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

The methods in this lecture are nonparametric.

1 Kernel Density Estimation

Let f be a probability density function. Given x1 . . . xn ∼ f , the goal is to estimate f .
Let us introduce the concept of smoothing kernel, not to be confused with the Mercer kernels used in the

Reproducing Kernel Hilbert Space sense. A smoothing kernel K is any smooth function satisfying

K(x) ≥ 0 (1)∫
K(x)dx = 1 (2)∫
xK(x)dx = 0. (3)

Some common smoothing kernels are

• The Gaussian kernel K(x) = 1√
2π

exp(−x2/2)

• The Epanechnikov kernel K(x) = 3
4 (1− x2), x ∈ [−1, 1], 0 otherwise

Given a kernel K and a positive bandwidth h, the kernel density estimator is defined to be

f̂n(x) =
1

n

n∑
i=1

1

h
K

(
x− xi
h

)
(4)

where the subscript n in f̂n(x) denotes the training sample size. The intuition is to put a little bump on
each training point and sum them up. It turns out that the choice of K is not crucial, but the choice of h is
important. In general, we let the bandwidth depend on sample size with the notation hn.

Theorem 1 Assume that f is continuous at x, hn → 0, and nhn →∞ as n→∞. Then f̂n(x)
P→ f(x).

Notice that f̂n(x) is a random variable. Let Rx = E(f̂n(x) − f(x))2 be the risk at point x (with squared
loss), and R =

∫
Rxdx be the integrated risk. Then the asymptotically optimal bandwidth is

h∗n = cn−1/(4+d), (5)

and the risk decreases as
R = O(n−4/(4+d)), (6)

where d is the dimensionality of x. However, the constant c in the optimal bandwidth depends on the
unknown density f , rendering this theoretical result useless in practice. One typically find the optimal
bandwidth by cross validation, as follows.
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We will work with the loss function called the integrated squared error

L(h) =

∫
(f̂n(x)− f(x))2dx (7)

=

∫
f̂n

2
(x)dx− 2

∫
f̂n(x)f(x)dx+ const(h). (8)

Let

J(h) =

∫
f̂n

2
(x)dx− 2

∫
f̂n(x)f(x)dx (9)

be the part of the loss that depends on h. The cross-validation estimator of risk is

Ĵ(h) =

∫
f̂n

2
(x)dx− 2

n

n∑
i=1

f̂−i(xi) (10)

where f̂−i(xi) is the kernel density estimator obtained on the training data excluding xi. This is leave-
one-out cross validation. It turns out that there is a short cut to computing Ĵ(h) without the need to do
leave-one-out:

Theorem 2 For any h > 0,
E[Ĵ(h)] = E[J(h)]. (11)

Furthermore,

Ĵ(h) =
1

n2h

n∑
i,j=1

(
G

(
xi − xj
h

)
− 2K

(
xi − xj
h

))
+

2

nh
K(0) +O

(
1

n2

)
, (12)

where G(z) =
∫
K(z − y)K(y)dy.

For example, when K = N(0, 1), G = N(0, 2).

2 Nonparametric Regression

Let
yi = r(xi) + εi (13)

for i = 1 . . . n, E[εi] = 0,V[εi] = σ2. The goal is to estimate r(x) from (x1, y1) . . . (xn, yn).
An estimator r̂ of r is a linear smoother if, for each x, there exists a vector γ(x) = (γ1(x), . . . , γn(x))>

such that

r̂(x) =

n∑
i=1

γi(x)yi. (14)

That is, γi(x) is the weight given to yi in forming the estimate r̂(x).

F This does not mean r̂(x) is necessarily linear in x!

Example 1 Linear regression is a special case of linear smoother:

r̂(x) =

D∑
d=1

βdxd =

n∑
i=1

γi(x)yi, (15)

where
γ(x)> = x>(X>X)−1X>. (16)
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2.1 The Nadaraya-Watson Kernel Estimator

Let h > 0 be the bandwidth, and K a smoothing kernel. The Nadaraya-Watson kernel estimator is a linear
smoother

r̂(x) =

n∑
i=1

γi(x)yi (17)

where

γi(x) =
K
(
x−xi

h

)∑n
j=1K

(
x−xj

h

) . (18)

To select the bandwidth in practice, we use cross-validation. The risk under squared loss is

E

(
1

n

n∑
i=1

(r̂(xi)− r(xi))2
)
. (19)

The corresponding leave-one-out score is

1

n

n∑
i=1

(yi − r̂−i(xi))2. (20)

For each point xi, the leave-one-out estimator is

r̂−i(x) =

n∑
j=1

γ−i,j(x)yj (21)

where

γ−i,j(x) =

{
γj(x)∑

k 6=i γk(x)
j 6= i

0 j = i.
(22)

That is, γ−i,j(x) is a renormalized version of γj(x) after removing the i-th weight. Again, there is no need to
actually compute n different estimates r̂−i, because the leave-one-out score can be computed in closed-form.

Theorem 3 The leave-one-out score can be written as

1

n

n∑
i=1

(
yi − r̂(xi)
1− γi(xi)

)2

. (23)

One then selects the optimal bandwidth by minimizing the score above (could have multiple local minima).

2.2 Local Linear Regression

First, consider the best constant function fit r̂(x) = a to the training data:

min
a

1

n

∑
i

(a− yi)2. (24)

The solution is simply a = 1
n

∑
i yi. Now, consider the weighted version “centered” at x where the i-th

training point is associated with a weight γi(x) = K((x− xi)/h). The constant fit to this weighted training
data is

min
a

1

n

∑
i

γi(x)(a− yi)2. (25)
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The solution turns out to be

a =

∑n
i=1 γi(x)yi∑n
i=1 γi(x)

. (26)

Because it is a constant function, in particular at x we have r̂(x) = a. This recovers the Nadaraya-Watson
kernel estimator.

More importantly, this suggests a way to improve upon the Nadaraya-Watson kernel estimator: instead
of assuming a constant function r̂(u) = a in (25), we may assume a family of linear functions, one of each
x’s neighborhood:

r̂x(u) = a0(x) + a1(x)(u− x). (27)

We now minimize the following objective:

min
a0(x),a1(x)

1

n

∑
i

γi(x)(a0(x) + a1(x)(u− xi)− yi)2. (28)

Once the solution â0(x) and â1(x) are found, we have

r̂x(u = x) = â0(x). (29)

This is called local linear regression. Even though this is the constant term, it is different from a local
constant fit (which would be Nadaraya-Watson). See AoS Theorem 5.57 for the closed-form solution.
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