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1 Probability Measure

A sample space Ω is the set of all possible outcomes. Elements ω ∈ Ω are called sample outcomes, while
subsets A ⊆ Ω are called events. For example, for a die roll, Ω = {1, 2, 3, 4, 5, 6}, ω = 5 is an outcome,
A1 = {5} is the event that the outcome is 5, and A2 = {1, 3, 5} is the event that the outcome is odd. Ideally,
one would like to be able to assign probabilities to all As. This is trivial for finite Ω. However, when Ω = R
strange things happen: it is no longer possible to consistently assign probabilities to all subsets of R.

F The problem is not singleton sets such as A = {π}, which happily has probability 0 (we will define it
formally). This happens because of the existence of non-measurable sets, whose construction is non-trivial.
See for example http: // www. math. kth. se/ matstat/ gru/ godis/ nonmeas. pdf

Instead, we will restrict ourselves to only some of the events. A σ-algebra B is a set of Ω subsets satisfying:
1. ∅ ∈ B

2. if A ∈ B then Ac ∈ B (complementarity)

3. if A1, A2, . . . ∈ B then ∪∞i=1Ai ∈ B (countable unions)
The sets in B are called measurable. The pair (Ω,B) is called a measurable space. For Ω = R, we take

the smallest σ-algebra that contains all the open subsets and call it the Borel σ-algebra.

F It turns out the Borel σ-algebra can be defined alternatively as the smallest σ-algebra that contains all
the closed subsets. Can you see why? It also follows that singleton sets {x} where x ∈ R is in the Borel
σ-algebra.

A measure is a function P : B 7→ R satisfying:
1. P (A) ≥ 0 for all A ∈ B

2. If A1, A2, . . . are disjoint then P (∪∞i=1Ai) =
∑∞
i=1 P (Ai)

Note these imply P (∅) = 0. The triple (Ω,B, P ) is called a measure space. The Lebesgue measure is a
uniform measure over the Borel σ-algebra with the usual meaning of length, area or volume, depending on
dimensionality. For example, for R the Lebesgue measure of the interval (a, b) is b− a.

A probability measure is a measure satisfying additionally the normalization constraint:

3 P (Ω) = 1.

Such a triple (Ω,B, P ) is called a probability space.

F When Ω is finite, P ({ω}) has the intuitive meaning: the chance that the outcome is ω. When Ω = R,
P ((a, b)) is the “probability mass” assigned to the interval (a, b).
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2 Random Variables

Let (Ω,B, P ) be a probability space. Let (R,R) be the usual measurable space of reals and its Borel σ-
algebra. A random variable is a function X : Ω 7→ R such that the preimage of any set A ∈ R is measurable
in B: X−1(A) = {ω : X(ω) ∈ A} ∈ B. This allows us to define the following (the first P is the new definition,
while the 2nd and 3rd P s are the already-defined probability measure on B):

P (X ∈ A) = P (X−1(A)) = P ({ω : X(ω) ∈ A}) (1)

P (X = x) = P (X−1(x)) = P ({ω : X(ω) = x}) (2)

F A random variable is a function. Intuitively, the world generates random outcomes ω, while a random
variable deterministically translates them into numbers.

Example 1 Let Ω = {(x, y) : x2 + y2 ≤ 1} be the unit disk. Consider drawing a point at random from Ω.
The outcome is of the form ω = (x, y). Some example random variables are X(ω) = x, Y (ω) = y, Z(ω) = xy,

and W (ω) =
√
x2 + y2.

Example 2 Let X = ω be a uniform random variable (to be defined later) with the sample space Ω = [0, 1].
A sequence of different random variables {Xn}∞n=1 can be defined as follows, where 1{z} = 1 if z is true, and
0 otherwise:

X1(ω) = ω + 1{ω ∈ [0, 1]} (3)

X2(ω) = ω + 1{ω ∈ [0,
1

2
]} (4)

X3(ω) = ω + 1{ω ∈ [
1

2
, 1]} (5)

X4(ω) = ω + 1{ω ∈ [0,
1

3
]} (6)

X5(ω) = ω + 1{ω ∈ [
1

3
,

2

3
]} (7)

X6(ω) = ω + 1{ω ∈ [
2

3
, 1]} (8)

. . .

Given a random variable X, the cumulative distribution function (CDF) is the function FX : R 7→ [0, 1]

FX(x) = P (X ≤ x) = P (X ∈ (−∞, x]) = P ({ω : X(ω) ∈ (−∞, x]}). (9)

A random variable X is discrete if it takes countably many values. We define the probability mass
function fX(x) = P (X = x).

A random variable X is continuous if there exists a function fX such that

1. fX(x) ≥ 0 for all x ∈ R

2.
∫∞
−∞ fX(x)dx = 1

3. for every a ≤ b, P (X ∈ [a, b]) =
∫ b
a
fX(x)dx.

The function fX is called the probability density function (PDF) of X. CDF and PDF are related by

FX(x) =

∫ x

−∞
fX(t)dt (10)

fX(x) = F ′X(x) at all points x at which FX is differentiable. (11)

F It is certainly possible for the PDF of a continuous random variable to be larger than one: fX(x)� 1.
In fact, the PDF can be unbounded as in f(x) = 2

3x
−1/3 for x ∈ (0, 1) and f(x) = 0 otherwise. However,

P (x) = 0 for all x. Recall that P and fX is related by integration over an interval. We will often use p
instead of fX to denote a PDF later in class.
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3 Some Random Variables

3.1 Discrete

Dirac or point mass distribution X ∼ δa if P (X = a) = 1 with CDF F (x) = 0 if x < a and 1 if x ≥ a.
Binomial. A random variable X has a binomial distribution with parameters n (number of trials) and

p (head probability) X ∼ Binomial(n, p) with probability mass function

f(x) =


(
n
x

)
px(1− p)n−x for x = 0, 1, . . . , n

0 otherwise
(12)

If X1 ∼ Binomial(n1, p) and X2 ∼ Binomial(n2, p) then X1 + X2 ∼ Binomial(n1 + n2, p). Think this as
merging two coin flip experiments on the same coin.
F The binomial distribution is used to model test set error of a classifier. Assuming a classifier’s true
error rate is p (with respect to the unknown underlying joint distribution – we will make it precise later in
class), then on a test set of size n the number of misclassified items follow Binomial(n, p).

Bernoulli. Binomial with n = 1.
Multinomial. The d-dimensional version of binomial. The parameter p = (p1, . . . , pd)

> is now the
probabilities of a d-sided die, and x = (x1, . . . , xd)

> is the counts of each face.

f(x) =


(

n
x1, . . . , xd

)∏d
k=1 p

xk

k if
∑d
k=1 xk = n

0 otherwise
(13)

F The multinomial distribution is typically used with the bag-of-word representation of text documents.

Poisson. X ∼ Poisson(λ) if f(x) = e−λ λ
x

x! for x = 0, 1, 2, . . .. If X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2)
then X1 +X2 ∼ Poisson(λ1 + λ2).
F This is a distribution on unbounded counts with a probability mass function“hump” (mode – not the
mean – at dλe − 1). It can be used, for example, to model the length of a document.

Geometric. X ∼ Geom(p) if f(x) = p(1− p)x−1 for x = 1, 2, . . .
F This is another distribution on unbounded counts. Its probability mass function has no “hump” (mode –
not the mean – at 1) and decreases monotonically. Think of it as a “stick breaking” procedure: start with a
stick of length 1. Each day you take away p fraction of the remaining stick. Then f(x) is the length you get
on day x. We will see more interesting stick breaking in Bayesian nonparametrics.

3.2 Continuous

Gaussian (also called Normal distribution). X ∼ N(µ, σ2) with parameters µ ∈ R (the mean) and σ2

(the variance) if

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
. (14)

The square root of variance σ > 0 is called the standard deviation. If µ = 0, σ = 1, X has a standard normal
distribution. In this case, X is usually written as Z. Some useful properties:
• (Scaling) If X ∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1)

• (Independent sum) If Xi ∼ N(µi, σ
2
i ) are independent, then

∑
iXi ∼ N

(∑
i µi,

∑
i σ

2
i

)
F Note there is concentration of measure in the independent sum: the “spread” or stddev grows as

√
n, not

n.
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F This is one PDF you need to pay close attention to. The CDF of a standard normal is usually written
as Φ(z), which has no closed-form expression. However, it qualitatively resembles a sigmoid function and is
often used in translating unbounded real “margin” values into probabilities of binary classes. You might
recognize the RBF kernel as an unnormalized version of the Gaussian PDF. The parameter σ2 or
confusingly σ or a scaled version of either is called the bandwidth.

χ2 distribution. If Z1, . . . , Zk are independent standard normal random variables, then Y =
∑k
i Z

2
i

has a χ2 distribution with k degrees of freedom. If Xi ∼ N(µi, σ
2
i ) are independent, then

∑
i

(
Xi−µi

σi

)2
has

a χ2 distribution with k degrees of freedom. The PDF for the χ2 distribution with k degrees of freedom is

f(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x > 0. (15)

Multivariate Gaussian. Let x, µ ∈ Rd, Σ ∈ Sd+ a symmetric, positive definite matrix of size d × d.
Then X ∼ N(µ,Σ) with PDF

f(x) =
1

|Σ|1/2(2π)d/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
. (16)

Here, µ is the mean vector, Σ is the covariance matrix, |Σ| its determinant, and Σ−1 its inverse (exists
because Σ is positive definite).

If we have two (groups of) variables that are jointly Gaussian:[
x
y

]
∼ N

([
µx
µy

]
,

[
A C
C> B

])
(17)

then we have:
• (Marginal) x ∼ N(µx, A)

• (Conditional) y|x ∼ N(µy + C>A−1(x− µx), B − C>A−1C)

F You want to pay attention to Multivariate Gaussian too. It is used frequently in mixture models (Mixture
of Gaussian), and as building blocks for Gaussian Processes. The conditional is useful for inference.

Exponential. X ∼ Exp(β) with parameter β > 0, if f(x) = 1
β e
−x/β .

F Not to be confused with the exponential family (more later).

Gamma. The Gamma function (not distribution) is defined as Γ(α) =
∫∞
0
yα−1e−ydy with α > 0. The

Gamma function is an extension to the factorial function: Γ(n) = (n − 1)! when n is a positive integer. It
also satisfies Γ(α + 1) = αΓ(α) for α > 0. X has a Gamma distribution with shape parameter α > 0 and
scale parameter β > 0, denoted by X ∼ Gamma(α, β), if

f(x) =
1

βαΓ(α)
xα−1e−x/β , x > 0. (18)

Gamma(1, β) is the same as Exp(β).
Beta. X ∼ Beta(α, β) with parameters α, β > 0, if

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1). (19)

Beta(1, 1) is uniform in [0, 1]. Beta(α < 1, β < 1) has a U-shape. Beta(α > 1, β > 1) is unimodal with mean
α/(α+ β) and mode (α− 1)/(α+ β − 2).
F Beta distribution has a special status in machine learning because it is the conjugate prior of the
binomial and Bernoulli distributions. A draw from a beta distribution can be thought of as generating a
(biased) coin. A draw from the corresponding Bernoulli distribution can be thought of as a flip of that coin.
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Dirichlet. The Dirichlet distribution is the multivariate version of the beta distribution. X ∼ Dir(α1, . . . , αd)
with parameters αi > 0, if

f(x) =
Γ(
∑d
i αi)∏d

i Γ(αi)

d∏
i

xαi−1
i , (20)

where x = (x1, . . . , xd) with xi > 0,
∑d
i xi = 1. This support is called the open (d− 1) dimensional simplex.

F The Dirichlet distribution is important for machine learning because it is the conjugate prior for
multinomial distributions. The analogy here is that of a dice factory (Dirichlet) and die rolls (multinomial).
It is used extensively for modeling bag-of-word documents. We will also see it in Dirichlet Processes.

t (or Student’s t) Distribution X ∼ tν has a t distribution with ν degrees of freedom, if

f(x) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
x2

ν

)−(ν+1)/2

(21)

It is similar to a Gaussian distribution, but with heavier tails (more likely to produce extreme values). When
ν =∞, it becomes a standard Gaussian distribution.
F “Student” is the pen name of William Gosset who worked for Guinness, because the brewery did not
want its employees to publish any scientific papers for the fear of leaking trade secret (sounds familiar?).

Cauchy. The Cauchy distribution is a special case of t-distribution with ν = 1. The PDF is

f(x) =
1

πγ

(
1 +

(
x−x0

γ

)2) (22)

where x0 is the location parameter for the mode, and γ is the scale parameter. It is notable for the lack
of mean: E(X) does not exist because

∫
x
|x|dFX(x) = ∞. Similarly, it has no variance or higher moments.

However, the mode and median are both x0.
F This is a very heavy-tailed distribution compared to Gaussian, so much so that draws from Cauchy will
occasionally produce very large values and the sample mean never settles.

4 Convergence of Random Variables

Let X1, X2, . . . , Xn, . . . be a sequence of random variables, and X be another random variable.
F Think of Xn as the classifier trained on a training set of size n. It is a random variable because the
training set is random (an iid sample of the underlying unknown joint distribution PXY ). Think of X as
the “true” classifier (well, it is a fixed quantity, not random, but that’s fine). We are interested in how the
classifiers behave as we have more and more training data: Do they get closer to X? What do we mean by
“close?” These questions are made precise by the different types of convergence. Study of such topics are
called large sample theory or asymptotic theory.

Xn converges to X in distribution, written Xn  X, if

lim
n→∞

FXn
(t) = F (t) (23)

at all t where F is continuous. Here, FXn
is the CDF of Xn, and F is the CDF of X. We expect to see the

next outcome in a sequence of random experiments becoming better and better modeled by the probability
distribution of X. In other words, the probability for Xn to be in a given interval is approximately equal to
the probability for X to be in the same interval, as n grows.
Example 3 Let X1, . . . , Xn be iid continuous random variables. Then trivially Xn  X1. But note P (X1 =
Xn) = 0.
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F It is their distributions that are the same, not their values which are controlled by different randomness.

Example 4 Let X2, . . . , Xn be identical (but not independent) copies of X1 ∼ N(0, 1). Then Xn  Y =
−X1.

Example 5 Let Xn ∼ uniform[0, 1/n]. Then Xn  δ0. This is often written as Xn  0.

F Interestingly, note F (0) = 1 but FXn
(0) = 0 for all n, so limn→∞ FXn

(0) 6= F (0). This does not
contradict the definition of convergence in distribution, because t = 0 is not a point at which F is
continuous.

Example 6 Let Xn has the PDF fn(x) = (1− cos(2πnx)), x ∈ (0, 1). Then Xn  uniform(0, 1).

F Note the PDFs fn’s do not converge at all, but the CDFs do.

Theorem 1 (The Central Limit Theorem). Let X1, . . . , Xn be iid with finite mean µ and finite variance
σ2 > 0. Let X̄n = 1

n

∑n
i Xi. Then

Zn =
X̄n − µ
σ/
√
n
 N(0, 1). (24)

Example 7 Let Xi ∼ uniform(−1, 1) for i = 1, . . . Note µ = 0, σ2 = 1/3. Then Zn =
√

3
n

∑
iXi  N(0, 1).

Example 8 Let Xi ∼ beta( 1
2 ,

1
2 ). Note µ = 1

2 , σ
2 = 1

8 . Then Zn =
√

8n
(
1
n

∑
iXi − 1/2

)
 N(0, 1).

F The Central Limit Theorem is the most widely used application of convergence in distribution.
Demo: CLT uniform.m and CLT beta.m

F Does the CLT apply to the Cauchy distribution?

Xn converges to X in probability, written Xn
P→ X, if for any ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0. (25)

F Convergence in probability is central to machine learning because a very important concept, consistency,
is defined using it.

Convergence in probability implies convergence in distribution. The reverse is not true in general. How-
ever, convergence in distribution to a point mass distribution implies convergence in probability.
F Example 3, Example 4, and Example 6 do not converge in probability. Example 5 does.

F The definition might be easier to understand if we rewrite it as

lim
n→∞

P ({ω : |Xn(ω)−X(ω)| > ε}) = 0.

That is, the fraction of outcomes ω on which Xn and X disagree must shrink to zero. When Xn(ω) and
X(ω) do disagree, they can differ by a lot in value. More importantly, note that Xn(ω) does not need to
converge to X(ω) pointwise for any ω. This will be the distinguishing property between converge in
probability and converge almost surely (to be defined shortly).

Example 9 Xn
P→ X in Example 2.

Xn converges almost surely to X, written Xn
as→ X, if

P
({
ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1 (26)
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Example 10 Example 2 does not converge almost surely to X there. This is because limn→∞Xn(ω) does

not exist for any ω. Pointwise convergence is central to
as→.

as→ implies
P→, which in turn implies  .

Example 11 Xn
as→ 0 (and hence Xn

P→ 0 and Xn  0) does not imply convergence in expectation E(Xn)→
0. To see this, let

P (Xn) =

{
1/n, if Xn = n2

1− 1/n, if Xn = 0
(27)

Then Xn
as→ 0. However, E(Xn) = 1

nn
2 = n does not converge.

Xn converges in rth mean where r ≥ 1, written as Xn
Lr

→ X, if

lim
n→∞

E(|Xn −X|r) = 0. (28)

Lr

→ implies
P→.

F
Lr

→ implies
Ls

→, if r > s ≥ 1. There is no general order between
Lr

→ and
as→.

Theorem 2 (The Weak Law of Large Numbers). If X1, . . . , Xn are iid, then X̄n = 1
n

∑n
i=1Xi

P→ µ(X1).

Theorem 3 (The Strong Law of Large Numbers). If X1, . . . , Xn are iid, and E(|X1|) < ∞, then X̄n =
1
n

∑n
i=1Xi

as→ µ(X1).
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