
CS761 Spring 2013 Advanced Machine Learning

Basics of Statistical Machine Learning

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

Modern machine learning is rooted in statistics. You will find many familiar concepts here with a different
name.

1 Parametric vs. Nonparametric Statistical Models

A statistical model H is a set of distributions.

F In machine learning, we call H the hypothesis space.

A parametric model is one that can be parametrized by a finite number of parameters. We write the
PDF f(x) = f(x; θ) to emphasize the parameter θ ∈ Rd. In general,

H =
{
f(x; θ) : θ ∈ Θ ⊂ Rd

}
(1)

where Θ is the parameter space. We will often use the notation

Eθ(g) =

∫
x

g(x)f(x; θ) dx (2)

to denote the expectation of a function g with respect to f(x; θ). Note the subscript in Eθ does not mean
integrating over all θ.
F This notation is standard but unfortunately confusing. It means “w.r.t. this fixed θ.” In machine
learning terms, this means w.r.t. different training sets all sampled from this θ. We will see integration
over all θ when discussing Bayesian methods.

Example 1 Consider the parametric model H = {N(µ, 1) : µ ∈ R}. Given iid data x1, . . . , xn, the optimal
estimator of the mean is µ̂ = 1

n

∑
xi.

F All (parametric) models are wrong. Some are more useful than others.

A nonparametric model is one which cannot be parametrized by a fixed number of parameters.
Example 2 Consider the nonparametric model H = {P : V arP (X) <∞}. Given iid data x1, . . . , xn, the
optimal estimator of the mean is again µ̂ = 1

n

∑
xi.

Example 3 In a naive Bayes classifier we are interested in computing the conditional p(y|x; θ) ∝ p(y; θ)
∏d
i p(xi|y; θ).

Is this a parametric or nonparametric model? The model is specified by H = {p(x, y; θ)} where θ contains
the parameter for the class prior multinomial distribution p(y) (finite number of parameters), and the class
conditional distributions p(xi|y) for each dimension. The latter can be parametric (such as a multinomial
over the vocabulary, or a Gaussian), or nonparametric (such as 1D kernel density estimation). Therefore,
naive Bayes can be either parametric or nonparametric, although in practice the former is more common.

F Should we prefer parametric or nonparametric models? Nonparametric makes weaker model
assumptions and thus is preferred. However, parametric models converges faster and are more practical.

In machine learning we are often interested in a function of the distribution T (F ), for example, the mean.
We call T the statistical functional, viewing F the distribution itself a function of x. However, we will also
abuse the notation and say θ = T (F ) is a “parameter” even for nonparametric models.
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2 Estimation

Given X1 . . . Xn ∼ F ∈ H, an estimator θ̂n is any function of X1 . . . Xn that attempts to estimate a parameter
θ.
F This is the “learning” in machine learning! In machine learning, a familiar case is classification where
Xi = (xi, yi) and θ̂n is the parameters of the classifier learned from such training data. Note the subscript

n for the training set size. Clearly, θ̂n is a random variable because the training set is random.

F Also note that the phrase “training set” is a misnomer because it is not a set: we allow multiple
instances of the same element. Some people therefore prefer the term “training sample.”

An estimator is consistent if
θ̂n

P→ θ. (3)

F Consistency is a fundamental, desirable property of good machine learning algorithms. Here the sequence
of random variables is w.r.t. training set size. Would you like a learning algorithm which gets worse with
more training data?

Because θ̂n is a random variable, we can talk about its expectation:

Eθ(θ̂n) (4)

where Eθ is w.r.t. the joint distribution f(x1, . . . , xn; θ) =
∏n
i=1 f(xi; θ). Then, the bias of the estimator is

bias(θ̂n) = Eθ(θ̂n)− θ. (5)

An estimator is unbiased if bias(θ̂n) = 0. The standard error of an estimator is

se(θ̂n) =

√
Varθ(θ̂n). (6)

Example 4 Don’t confuse standard error with standard deviation of f . Let µ̂ = 1
n

∑
i xi, where xi ∼ N(0, 1).

Then the standard deviation of xi is 1 regardless of n. In contrast, se(µ̂) = 1/
√
n = n−

1
2 which decreases

with n.
The mean squared error of an estimator is

mse(θ̂n) = Eθ
(

(θ̂n − θ)2
)
. (7)

Theorem 1 mse(θ̂n) = bias2(θ̂n) + se2(θ̂n) = bias2(θ̂n) + Varθ(θ̂n).

F If bias(θ̂n)→ 0 and Varθ(θ̂n)→ 0 then mse(θ̂n)→ 0. This implied θ̂n
L2

→ θ, and θ̂n
P→ θ, so that θ̂n is

consistent.

F Why are we interested in the mse? Normally we don’t. We will see other “quality measures” later.

3 Maximum Likelihood

For parametric statistical models, a common estimator is the maximum likelihood estimator. Let x1, . . . , xn
be iid with PDF f(x; θ) where θ ∈ Θ. The likelihood function is

Ln(θ) = f(x1, . . . , xn; θ) =

n∏
i=1

f(xi; θ). (8)



Basics of Statistical Machine Learning 3

The log likelihood function is `n(θ) = logLn(θ). The maximum likelihood estimator (MLE) is

θ̂n = argmaxθ∈ΘLn(θ) = argmaxθ∈Θ`n(θ). (9)

Example 5 The MLE for p(head) from n coin flips is count(head)/n, sometimes called “estimating prob-
ability by the frequency.” This is also true for multinomials. The MLE for X1, . . . , XN ∼ N(µ, σ2) is
µ̂ = 1/n

∑
iXi and σ̂2 = 1/n

∑
(Xi − µ̂)2. These agree with our intuition. However, the MLE does not

always agree with intuition. For example, the MLE for X1, . . . , Xn ∼ uniform(0, θ) is θ̂ = max(X1, . . . , Xn).
You would think θ is larger, no?

The MLE has several nice properties. The Kullback-Leibler divergence between two PDFs is

KL(f‖g) =

∫
f(x) log

(
f(x)

g(x)

)
dx. (10)

The model H is identifiable if ∀θ, ψ ∈ Θ, θ 6= ψ implies KL(f(x;φ)‖f(x;ψ)) > 0. That is, different
parameters correspond to different PDFs.

Theorem 2 When H is identifiable, under certain conditions (see Wasserman Theorem 9.13), the MLE

θ̂n
P→ θ∗, where θ∗ is the true value of the parameter θ. That is, the MLE is consistent.

Given n iid observations, the Fisher information is defined as

In(θ) = nEθ

[(
∂

∂θ
ln f(X; θ)

)2
]

= −nEθ
[
∂2

∂θ2
ln f(X; θ)

]
(11)

Example 6 Consider n iid observations xi ∈ {0, 1} from a Bernoulli distribution with true parameter p.

f(x; p) = px(1 − p)1−x. It follows that ∂2

∂θ2 ln f(X; θ), evaluated at p, is −x/p2 − (1 − x)/(1 − p)2. Taking
the expectation over x under f(x; p) and multiply by −n, we arrive at In(p) = n

p(1−p) .

F Informally, Fisher information measures the curvature of the log likelihood function around θ. A sharp
peak around θ means the true parameter is distinct and should be easier to learn from n samples. The
Fisher information is sometimes used in active learning to select queries. Note Fisher information is not a
random variable. It does not depend on the particular n items, but rather only on the size n. Fisher
information is not Shannon information.

Theorem 3 (Asymptotic Normality of the MLE). Let se =

√
V arθ(θ̂n). Under appropriate regularity

conditions, se ≈
√

1/In(θ), and

θ̂n − θ
se

 N(0, 1). (12)

Furthermore, let ŝe =

√
1/In(θ̂n). Then

θ̂n − θ
ŝe

 N(0, 1). (13)

F This says that the MLE is distributed asymptotically as N(θ, 1

In(θ̂n)
). There is uncertainty, determined

by both the sample size n and the Fisher information. It turns out that this uncertainty is fundamental,
that no (unbiased) estimators can do better than this. This is captured by the Cramér-Rao bound. In other
words, no (unbiased) machine learning algorithms can estimate the true parameter any better. Such
information is very useful for designing machine learning algorithms.
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Theorem 4 (Cramér-Rao Lower Bound) Let θ̂n be any unbiased estimator (not necessarily the MLE) of θ.
Then the variance is lower bounded by the inverse Fisher information:

V arθ(θ̂n) ≥ 1

In(θ)
. (14)

The Fisher information can be generalized to the high dimensional case. Let θ be a parameter vector.
The Fisher information matrix has i, jth element

Iij(θ) = −E
[
∂2 ln f(X; θ)

∂θi∂θj

]
. (15)

An unbiased estimator that achieves the Cramér-Rao lower bound is said to be efficient. It is asymptot-
ically efficient if it achieves the bound as n→∞.

Theorem 5 The MLE is asymptotically efficient.

F However, a biased estimator can sometimes achieve lower mse.

4 Bayesian Inference

The statistical methods discussed so far are frequentist methods:
• Probability refers to limiting relative frequency.

• Data are random.

• Estimators are random because they are functions of data.

• Parameters are fixed, unknown constants not subject to probabilistic statements.

• Procedures are subject to probabilistic statements, for example 95% confidence intervals traps the true
parameter value 95

F Classifiers, even learned with deterministic procedures, are random because the training set is random.
PAC bound is similarly frequentist. Most procedures in machine learning are frequentist methods.

An alternative is the Bayesian approach:
• Probability refers to degree of belief.

• Inference about a parameter θ is by producing a probability distributions on it. Typically, one starts
with a prior distribution p(θ). One also chooses a likelihood function p(x | θ) – note this is a function
of θ, not x. After observing data x, one applies the Bayes Theorem to obtain the posterior distribution
p(θ | x):

p(θ | x) =
p(θ)p(x | θ)∫
p(θ′)p(x | θ′)dθ′

∝ p(θ)p(x | θ), (16)

where Z ≡
∫
p(θ′)p(x | θ′)dθ′ is known as the normalizing constant. The posterior distribution is a

complete characterization of the parameter.

Sometimes, one uses the mode of the posterior as a simple point estimate, known as the maximum a
posteriori (MAP) estimate of the parameter:

θMAP = argmaxθp(θ | x). (17)

Note MAP is not a proper Bayesian approach.
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• Prediction under an unknown parameter is done by integrating it out:

p(x | Data) =

∫
p(x | θ)p(θ | Data)dθ. (18)

F Here lies the major difference between frequentist and Bayesian approaches in machine learning practice.
A frequentist approach would produce a point estimate θ̂ from Data, and predict with p(x | θ̂). In contrast,
the Bayesian approach needs to integrate over different θs. In general, this integration is intractable and
hence Bayesian machine learning has been focused on either finding special distributions for which the
integration is tractable, or finding efficient approximations.

Example 7 Let θ be a d-dim multinomial parameter. Let the prior be a Dirichlet p(θ) = Dir(α1, . . . , αd).
The likelihood is multinomial p(x | θ) = Multi(x | θ), where x is a “training” count vector. These two
distributions are called conjugate to each other as the posterior is again Dirichlet: p(θ | x) = Dir(α1 +
x1, . . . , αd + xd).

Now let’s look into the predictive distribution for some “test” count vector x′. If θ ∼ Dir(β), the result
of integrating θ out is

p(x′ | β) =

∫
p(x′ | θ)p(θ | β)dθ (19)

=
(
∑
k x
′
k)!∏

k (x′k!)

Γ (
∑
k βk)

Γ (
∑
k βk + x′k)

∏
k

Γ (βk + x′k)

Γ (βk)
(20)

This is an example where the integration has a happy ending: it has a simple(?) closed-form. This is known
as a Dirichlet compound multinomial distribution, also known as a multivariate Pólya distribution.

Where does the prior p(θ) come from?

• Ideally it comes from domain knowledge. One major advantage of Bayesian approaches is the principled
way to incorporate prior knowledge in the form of the prior.

• Non-informative, or flat, prior, where there does not seem to be a reason to prefer any particular
parameter. This may however create improper priors. Let X ∼ N(θ, σ2) with σ2 known. A flat prior
p(θ) ∝ c > 0 would be improper because

∫
p(θ)dθ =∞, so it is not a density. Nonetheless, the posterior

distribution is well-defined.

A flat prior is not transformation invariant. Jeffrey’s prior p(θ) ∝ I(θ)1/2 is.

• It should be pointed out that in practice, the choice of prior is often dictated by computational
convenience, in particular conjugacy.
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