
CS769 Spring 2010 Advanced Natural Language Processing

Hidden Markov Models

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

1 Part-of-Speech Tagging

The goal of Part-of-Speech (POS) tagging is to label each word in a sentence with its part-of-speech, e.g.,

The/AT representative/NN put/VBD chairs/NNS on/IN the/AT table/NN.

It is useful in information extraction, question answering, shallow parsing, and so on. There are many tag
sets, for example the Penn Treebank Tagset has 45 POS.

The major difficulty in POS tagging is that a word might have multiple possible POS. For example

I/PN can/MD can/VB a/AT can/NN.

Two kinds of information can help us overcome this difficulty:

1. Some tag sequences are more likely than others. For instance, AT JJ NN is quite common, while AT
JJ VBP is unlikely. (“a new book”)

2. A word may have multiple possible POS, but some are more likely than others, e.g., “flour” is more
often a noun than a verb.

The question is: given a word sequence x1:N , how do we compute the most likely POS sequence z1:N? One
method is to use a Hidden Markov Model.

2 Hidden Markov Models

An HMM has the following components:

• K states (e.g., tag types)

• initial distribution π ≡ (π1, . . . , πK)>, a vector of size K.

• emission probabilities p(x|z), where x is an output symbol (e.g., a word) and z is a state (e.g., a tag).
In this example, p(x|z) can be a multinomial for each z. Note it is possible for different states to output
the same symbol – this is the source of difficulty. Let φ = {p(x|z)}.

• state transition probabilities p(zn = j|zn−1 = i) ≡ Aij , where A is a K ×K transition matrix. This is
a first-order Markov assumption on the states.

The parameters of an HMM is θ = {π, φ, A}. An HMM can be plotted as a transition diagram (note it is
not a graphical model! The nodes are not random variables). However, its graphical model is a linear chain
on hidden nodes z1:N , with observed nodes x1:N .

There is a nice “urn and ball” model that explains HMM as a generative model. We can run an HMM
for n steps, and produce x1:N , z1:N . The joint probability is

p(x1:N , z1:N |θ) = p(z1|π)p(x1|z1, φ)
N∏

n=2

p(zn|zn−1, A)p(xn|zn, φ). (1)

1

Hidden Markov Models 2

Since the same output can be generated by multiple states, there usually are more than one state sequence
that can generate x1:N .

The problem of tagging is arg maxz1:N p(z1:N |x1:N , θ), i.e., finding the most likely state sequence to explain
the observation. As we see later, it is solved with the Viterbi algorithm, or more generally the max-sum
algorithm. But we need good parameters θ first, which can be estimated using maximum likelihood on some
(labeled and unlabeled) training data using EM (known as Baum-Welch algorithm for HMM). EM training
involves the so-called forward-backward (or in general sum-product) algorithm.

Besides tagging, HMM has been a huge success for acoustic modeling in speech recognition, where an
observation is the acoustic feature vector in a short time window, and a state is a phoneme (this is over-
simplified).

3 Use HMM for Tagging

Given input (word) sequence w1:N and HMM θ, tagging can be formulated as finding the most likely state
sequence z1:N that maximizes p(z1:N |x1:N , θ). This is precisely the problem max-sum algorithm solves. In
the context of HMMs, the max-sum algorithm is known as the Viterbi algorithm.

4 HMM Training: The Baum-Welch Algorithm

Let x1:N be a single, very long training sequence of observed output (e.g., a long document), and z1:N its
hidden labels (e.g., the corresponding tag sequence). It is easy to extend to multiple training documents.

4.1 The trivial case: z1:N observed

We find the maximum likelihood estimate of θ by maximizing the likelihood of observed data. Since both
x1:N and z1:N are observed, MLE boils down to frequency estimate. In particular,

• Aij is the fraction of times z = i is followed by z′ = j in z1:N .

• φ is the MLE of output x under z. For multinomials, p(x|z) is the fraction of times x is produced
under state z.

• π is the fraction of times each state being the first state of a sequence (assuming we have multiple
training sequences).

4.2 The interesting case: z1:N unobserved

The MLE will maximize (up to a local optimum, see below) the likelihood of observed data

p(x1:N |θ) =
∑
z1:N

p(x1:N , z1:N |θ), (2)

where the summation is over all possible label sequences of length N . Already we see this is an exponential
sum with KN label sequences, and brute force will fail. HMM training uses a combination of dynamic
programming and EM to handle this issue.

Note the log likelihood involves summing over hidden variables, which suggests we can apply Jensen’s

Hidden Markov Models 3

inequality to lower bound (2).

log p(x1:N |θ) = log
∑
z1:N

p(x1:N , z1:N |θ) (3)

= log
∑
z1:N

p(z1:N |x1:N , θold)
p(x1:N , z1:N |θ)

p(z1:N |x1:N , θold)
(4)

≥
∑
z1:N

p(z1:N |x1:N , θold) log
p(x1:N , z1:N |θ)

p(z1:N |x1:N , θold)
. (5)

We want to maximize the above lower bound instead. Taking the parts that depends on θ, we define an
auxiliary function

Q(θ, θold) =
∑
z1:N

p(z1:N |x1:N , θold) log p(x1:N , z1:N |θ). (6)

The p(x1:N , z1:N |θ) term is defined as the product along the chain in (1). By taking the log, it becomes
summation of terms. Q is the expectation of individual terms under the distribution p(z1:N |x1:N , θold). In
fact more variables will be marginalized out, leading to expectation under very simple distributions. For
example, the first term in log p(x1:N , z1:N |θ) is log p(z1|π), and its expectation is∑

z1:N

p(z1:N |x1:N , θold) log p(z1|π) =
∑
z1

p(z1|x1:N , θold) log p(z1|π). (7)

Note we go from an exponential sum over possible z1:N sequences to a single variable z1, which has only K

values. Introducing the shorthand γ1(k) = p(z1 = k|x1:N , θold), the marginal of z1 given input x1:N and old
parameters, the above expectation is

∑K
k=1 γ1(k) log πk.

In general, we use the shorthand

γn(k) = p(zn = k|x1:N , θold) (8)

ξn(jk) = p(zn−1 = j, zn = k|x1:N , θold) (9)

to denote the node marginals and edge marginals (conditioned on input x1:N , under the old parameters). It
will be clear that these marginal distributions play an important role. The Q function can be written as

Q(θ, θold) =
K∑

k=1

γ1(k) log πk +
N∑

n=1

K∑
k=1

γn(k) log p(xn|zn = k, φ) +
N∑

n=2

K∑
j=1

K∑
k=1

ξn(jk) log Ajk. (10)

We are now ready to state the EM algorithm for HMMs, known as the Baum-Welch algorithm. Our goal
is to find θ that maximizes p(x1:N |θ), and we do so via a lower bound, or Q. In particular,

1. Initialize θ randomly or smartly (e.g., using limited labeled data with smoothing)

2. E-step: Compute the node and edge marginals γn(k), ξn(jk) for n = 1 . . . N , j, k = 1 . . .K. This is
done using the forward-backward algorithm (or more generally the sum-product algorithm), which is
discussed in a separate note.

3. M-step: Find θ to maximize Q(θ, θold) as in (10).

4. Iterate E-step and M-step until convergence.

As usual, the Baum-Welch algorithm finds a local optimum of θ for HMMs.

Hidden Markov Models 4

5 The M-step

The M-step is a constrained optimization problem since the parameters need to be normalized. As before,
one can introduce Lagrange multipliers and set the gradient of the Lagrangian to zero to arrive at

πk ∝ γ1(k) (11)

Ajk ∝
N∑

n=2

ξn(jk) (12)

Note Ajk is normalized over k. φ is maximized depending on the particular form of the distribution
p(xn|zn, φ). If it is multinomial, p(x|z = k, φ) is the frequency of x in all output, but each output at
step n is weighted by γn(k).

6 The E-step

We need to compute the marginals on each node zn, and on each edge zn−1zn, conditioned on the observation
x1:N . Recall this is precisely what the sum-product algorithm can do. We can convert the HMM into a
linear chain factor graph with variable nodes z1:N and factor nodes f1:N . The graph is a chain with the
order, from left to right, f1, z1, f2, z2, . . . , fN , zN . The factors are

f1(z1) = p(z1|π)p(x1|z1) (13)
fn(zn−1, zn) = p(zn|zn−1)p(xn|zn). (14)

We note that x1:N do not appear in the factor graph, instead they are absorbed into the factors.
We pass messages from left to right along the chain, and from right to left. This corresponds to the

forward-backward algorithm. It is worth noting that since every variable node zn has only two factor node
neighbors, it simply repeats the message it received from one of the neighbor to the other. The left-to-right
messages are

µfn→zn
=

K∑
k=1

fn(zn−1 = k, zn)µzn−1→fn
(15)

=
K∑

k=1

fn(zn−1 = k, zn)µfn−1→zn−1 (16)

=
K∑

k=1

p(zn|zn−1 = k)p(xn|zn)µfn−1→zn−1 . (17)

It is not hard to show that

µfn→zn = p(x1, . . . , xn, zn), (18)

and this message is called α in standard forward-backward literature, corresponding to the forward pass.
Similarly, one can show that the right-to-left message

µfn+1→zn = p(xn+1, . . . , xN |zn). (19)

This message is called β and corresponds to the backward pass.
By multiplying the two incoming messages at any node zn, we obtain the joint

p(x1:N , zn) = µfn→znµfn+1→zn (20)

Hidden Markov Models 5

since x1:N are observed (see the sum-product lecture notes, and we have equality because HMM is a directed
graph). If we sum over zn, we obtain the marginal likelihood of observed data

p(x1:N) =
K∑

zn=1

µfn→znµfn+1→zn , (21)

which is useful to monitor the convergence of Baum-Welch (note summing over any zn will give us this).
Finally the desired node marginal is obtained by

γn(k) ≡ p(zn = k|x1:N) =
p(x1:N , zn = k)

p(x1:N)
. (22)

A similar argument gives ξn(jk) using the sum-product algorithm too.

	Part-of-Speech Tagging
	Hidden Markov Models
	Use HMM for Tagging
	HMM Training: The Baum-Welch Algorithm
	The trivial case: z1:N observed
	The interesting case: z1:N unobserved

	The M-step
	The E-step

