
CS769 Spring 2010 Advanced Natural Language Processing

Inference in Graphical Models

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

“Inference” is the problem of computing the posterior distribution of hidden nodes given observed nodes
in a graphical model. In particular, we are interested in the marginal distribution of each hidden node. The
graphical model can be directed or undirected.

A graphical model defines a joint distribution p(x1:N ). Let’s assume there is no observed node, and we
want the marginal p(xn) on node n. By definition,

p(xn) =
∑
x1

. . .
∑
xn−1

∑
xn+1

. . .
∑
xN

p(x1:N ). (1)

However, there are an exponential number of terms! This naive approach, although correct in theory, will
not work in practice.

We can take advantage of the graph structure (which specifies conditional independence relations among
nodes) to greatly speed up inference. There are several techniques, include variable elimination, junction
tree and the sum-product algorithm. We focus on the sum-product algorithm because it is widely used in
practice.

1 Factor Graph

It is convenient to introduce factor graph, which unifies directed and undirected graph with the same rep-
resentation. The joint probability is written as a product of factors fs(xs), where xs is the set of nodes
involved in the factor,

p(x1:N ) =
∏
s

fs(xs). (2)

In directed graph, the factors can be local conditional distributions of each node. In undirected graph, the
factors can be the potential functions, with the normalization term 1/Z being a special factor with zero
nodes.

There are two types of nodes in a factor graph: the set of original nodes, and the set of factors, forming
a bipartite graph.

2 The Sum-Product Algorithm

The sum-product algorithm is also known as belief propagation. It can compute the marginals of all nodes
efficiently and exactly, if the factor graph is a tree (i.e., if there is only one path between any two nodes).
The algorithm involves passing messages on the factor graph. A message is a vector of length K, where K
is the number of possible states a node can take. It is an un-normalized ‘belief’.

There are two types of messages:

1. A message from a factor node f to a variable node x, denoted as µf→x. Note it is a vector of length
K, and we write the x-th element (a slight abuse of notation, x = 1 . . .K) as µf→x(x).

2. A message from a variable node x to a factor node f , denoted as µx→f . It is also a vector of length
K, with elements µx→f (x).

1



Inference in Graphical Models 2

The messages are defined recursively. In particular, consider a factor fs that involves (connects to) a
particular variable x. Denote the other variables involved in fs by x1:M . We have

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM )
M∏

m=1

µxm→fs(xm), (3)

and
µxm→fs(xm) =

∏
f∈ne(xm)\fs

µf→xm(xm), (4)

where ne(xm)\fs is the set of factors connected to xm, excluding fs.
The recursion is initialized as follows. Since we assumed the factor graph is a tree, we can pick an

arbitrary node and call it the root. This defines all the leaf nodes, which we start all the messages. If a leaf
is a variable node x, its message to a factor node f is

µx→f (x) = 1. (5)

If a leaf is a factor node f , its message to a variable node x is

µf→x(x) = f(x). (6)

A node (factor or variable) can send out a message if all the necessary incoming messages have arrived. This
will eventually happen for tree structured factor graph.

Once all messages have been sent, one can compute the desired marginal probabilities as

p(x) ∝
∏

f∈ne(x)

µf→x(x). (7)

One can also compute the marginal of the set of variables xs involved in a factor fs

p(xs) ∝ fs(xs)
∏

x∈ne(f)

µx→f (x). (8)

If a variable x is observed x = v, it is a constant in all neighboring factors. Its message µx→f (x) is
set to zero for all x 6= v. Alternatively, we can eliminate observed nodes by absorbing them (with their
observed constant values) into the corresponding factors. Let Xo be the set of observed variables. With this
modification, we get the joint probability (NB. not the conditional p(x|Xo)) of a single node x and all the
observed nodes when we multiply the incoming messages to x:

p(x,Xo) ∝
∏

f∈ne(x)

µf→x(x). (9)

The conditional is easily obtained by normalization afterwards

p(x|Xo) =
p(x,Xo)∑
x′ p(x′, Xo)

. (10)

When the factor graph contains loops (not a tree), there is no longer guarantee that the algorithm will
even converge. However, people find in practice that it still works quite well. This way of applying the
sum-product algorithm is known as loopy belief propagation (loopy BP).



Inference in Graphical Models 3

3 The Max-Sum Algorithm

Sometimes it is important to know the ‘best states’ z1:N corresponding to the observation x1:N . There are
at least two senses of ‘best’:

1. With the sum-product algorithm we can compute the marginal p(zn|x1:N ) for each node. We can define
‘best’ to be the state with the highest marginal probability

z∗n = arg max
k

p(zn = k|x1:N ), (11)

and we will have a set of most likely states z∗1:N . Each time step is the best individual, however z∗1:N as
a whole may not be the most likely state configuration. In fact it can even be an invalid configuration
with zero probability, depending on the model!

2. The alternative is to find
z∗1:N = arg max

z1:N
p(z1:N |x1:N ). (12)

It finds the most likely state configuration as a whole. The max-sum algorithm addresses this problem
efficiently.

We first modify the sum-product algorithm to obtain the max-product algorithm. The idea is very simple:
replace

∑
with max in the messages. In fact only factor-to-variable messages are affected:

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM )
M∏

m=1

µxm→fs(xm) (13)

µxm→fs(xm) =
∏

f∈ne(xm)\fs

µf→xm(xm) (14)

µxleaf→f (x) = 1 (15)

µfleaf→x(x) = f(x). (16)

As before, we specify an arbitrary variable node x as the root, and pass messages from leaves until they
reach the root. At the root, we multiply all incoming messages to obtain the maximum probability

pmax = max
x

 ∏
f∈ne(x)

µf→x(x)

 . (17)

This is the probability of the most likely state configuration. But we have not specified how to identify
the configuration itself. Note unlike the sum-product algorithm, we do not pass messages back from root
to leaves. Instead, we keep back pointers whenever we perform the max operation. In particular, when we
create the message

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM )
M∏

m=1

µxm→fs(xm), (18)

for each x value, we separately create M pointers back to the values of x1, . . . , xM that achieve the maximum.
When at the root, we back trace the pointers from the value x that achieve pmax. This eventually gives us
the complete most likely state configuration.



Inference in Graphical Models 4

The max-sum algorithm is equivalent to the max-product algorithm, but work in log space, to avoid
potential underflow problem. In particular, the messages are

µfs→x(x) = max
x1

. . .max
xM

log fs(x, x1, . . . , xM ) +
M∑

m=1

µxm→fs(xm) (19)

µxm→fs(xm) =
∑

f∈ne(xm)\fs

µf→xm(xm) (20)

µxleaf→f (x) = 0 (21)

µfleaf→x(x) = log f(x). (22)

When at the root,

log pmax = max
x

 ∑
f∈ne(x)

µf→x(x)

 . (23)

The back pointers are the same. The max-product or max-sum algorithm, when applied to HMMs, is known
as the Viterbi algorithm.


	Factor Graph
	The Sum-Product Algorithm
	The Max-Sum Algorithm

