CS769 Spring 2010 Advanced Natural Language Processing
Clustering

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

Clustering is an unsupervised learning method. Given items z1,...,z, € RP, the goal is to group them
into reasonable clusters. We also need a pairwise distance/similarity function between items, and sometimes
the desired number of clusters.

When documents are represented by feature vectors, a commonly used similarity measure is the cosine
similarity. Let x, 2" be two document vectors. There is an angle 6 between the two vectors x, z’. The cosine
similarity is defined as

sim(x,2’) = cos(f) (1)
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This similarity has the nice property that document length is implicitly normalized (so that a long document

can be similar to a short document). This would not be the case if one uses the Euclidean distance between
/

x,x.

1 Agglomerative Hierarchical Clustering

This is a very simple procedure:

1. Initially each item z1,...,x, is in its own cluster Cy,...,C,,.
2. Repeat until there is only one cluster left:
3. Merge the nearest clusters, say C; and Cj.

The result is a cluster tree. One can cut the tree at any level to produce different clusterings. A little
thought reveals that “the nearest clusters” are not well-defined, since we only have a distance measure
d(x,z") between items. This is where the variations come in:

e d(C;,Cj) = mingec, »rec; d(x,2’). This is known as single-linkage. It is equivalent to the minimum
spanning tree algorithm. One can set a threshold and stop clustering once the distance between clusters
is above the threshold. Single-linkage tends to produce long and skinny clusters.

e d(C;,C)) = maxgec; o'ec; d(z,2"). This is known as complete-linkage. Clusters tend to be compact
and roughly equal in diameter.

e d(C;,Cy) = Zmeclgwllfg?'ld(w’m/). This is the average distance between items. Somewhere between
il'1C5

single-linkage and complete-linkage.
e and a million other ways you can think of ...

How do we evaluate the quality of a clustering? Unfortunately, we are out of luck here. If each item has a true
label, we can compute an accuracy, but this almost goes back to classification. In reality most clustering
problems do not come with ground truth labels. Perhaps the following famous quote will illustrate the
problem:
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“The correct clustering is whatever my program outputs.”

A related (simpler?) problem is to determine the number of clusters. There are ways to define the optimal
number, if one makes strong assumptions about the structure of the data. But in general this is an ill-posed
problem too.

2 k-Means Clustering

This is a widely used clustering algorithm. It assumes that we know the number of clusters k. This is an
iterative algorithm which keeps track of the cluster centers (means). The centers are in the same feature
space as .

1. Randomly choose k centers p1, ..., pg.

2. Repeat

3. Assign 7 ...z, to their nearest centers, respectively.
4 Update p; to the mean of the items assigned to it.

5. Until the clusters no longer change.

Step 3 is equivalent to creating a Voronoi diagram under the current centers. k-means clustering is sensitive
to the initial cluster centers. It is in fact an optimization problem with a lot of local optimaﬂ It is of course
sensitive to k too. Both should be chosen with care.

Since k-means is the limiting case of EM with Gaussian mixture models, when the variance of the
Gaussian approaches 0, it is unable to trace winding clusters. This is addressed by spectral clustering.

3 Spectral Clustering

Spectral clustering is best understood not as a clustering algorithm by itself, but as a “preprocessing” step
to change the feature representation of x. Imagine you have many points on a piece of paper (this is one
cluster). You bend, twist, fold, roll the paper and hang it in a room. Your paper is now a 2D manifold in
a 3D embedding (or ambient) Euclidean space. Each point is represented by its 3D coordinates (the feature
representation). Do the same thing for many pieces of paper (more clusters) and hang them close to each
other (but not touching). This roomful of papers can be bad for a clustering algorithm using the Euclidean
distance, because a point z; could be closer to a point x; from a different cluster than to points in its own
cluster (imagine two flat paper in parallel with a small gap). With spectral clustering, one can perform a
non-linear “warping” so that each piece of paper (and all the points on it) shrinks to a single point (or a
very small volume) in some new feature space. Clustering in that new space is trivial, with e.g. k-means.

3.1 The Graph

Spectral clustering takes a graph W and the number of clusters C' as input. The graph nodes are z1, ..., z,.
The undirected edges have non-negative weights and reflect the (local) similarity between nodes. The weights
are symmetric: w;; = wj;. w;; = 0 if there is no edge. The weights can be arranged in an n x n weight
matrix W, which fully specifies the graph. The graph is often generated with one of the following three
methods:

1. k-nearest-neighbor (kNN) graph. The Euclidean distance between z;, x; is ||x; — z;||. Connect z; with
x; if ; is within the kNN of x;, or vice versa. The edges usually have the same weight w;; = 1 (which
is confusingly called an unweighted graph). The neighborhood size k should be chosen so that it is
small, while the graph is connected. This is the most frequently used graph.

ITo be exact, k-means clustering is a special case of Gaussian Mixture Model (GMM) when the covariance of the Gaussian
components tends to zero.
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2. Fully connected graph with RBF weights. All points are connected. w;; = exp(—|z; — z;||/0?).
3. NN graph. Connect z; with z; if ||z; — x;|| < e. This graph is usually unweighted too.

In all kinds of graphs, the idea is to keep the similarities within a small neighborhood (in this case the distance
in the embedding space is close to the manifold geodesic distance), and ignore long range similarities (where
the embedding distance is no longer a good approximation to geodesic distance).

3.2 The Graph Laplacian and Its Spectrum

Any n x n symmetric matrix M has n real eigenvalues A1, ..., )\, (not necessarily distinct), and the corre-
sponding eigenvectors ¢y, ..., ¢, (of dimension n. We assume the eigenvectors have norm 1). We always
sort the eigenvalues from small to large. Recall the definition

Mo = Xigi. (4)

The set of eigenvalues are called the spectrum of M, because of the following decomposition:
M= " Xioig] . (5)
i=1
Let the degree matrix be a diagonal matrix with

dig =) wij, (6)
j=1

i.e., the sum of edge weights connected to x;.
From the weight matrix W, we will define 3 slightly different graph Laplacian matrices:

1. The unnormalized Laplacian (also called combinatorial Laplacian) matrix L = D — W.
2. The normalized Laplacian Ly, =1 — D™1W.
3. Another normalized Laplacian Lgyym =1 — D WD~ 3.

We will be particularly interested in the spectrum of the Laplacian matrices. It turns out that the
eigenvalues of a Laplacian is always non-negative. The key property is the following:

Theorem 1 If the graph W has C connected components, then L, Ly, Loym have exactly C zero eigenval-
ues (other eigenvalues are positive). Furthermore, for L and L., those corresponding C eigenvectors are
proportional to the indicator vectors of each componemEI.

3.3 Change of Representation and Clustering

Theorem 1 is the basis of spectral clustering. In the ideal case, each cluster forms a connected component
in graph W. Let us use L or L,,,. Let U be the n x C' matrix formed with those C eigenvectors as columns.
We represent z; by the i-th row in U for ¢ = 1...n. Then all points within a cluster have the same new
representation, i.e., we have shrunken each piece of paper into a unique point!

However, in reality the graph may not consists of exactly one connected component per cluster. In this
case, we view W as a perturbed version of the ideal graph: W = W;4.q; + B. The B matrix contains the edge
weights we add/subtract to the ideal graph. Perturbation theory states that as long as the perturbation B
is not too large, the first C eigenvectors will not change too much. We can still use the new representation,
but each piece of paper is now shrinking into a small region instead of a single point. This is still sufficient
for k-means algorithm to easily identify the C clusters.

The complete spectral clustering algorithm is given below.

2Up to rotation within the eigenspace of eigenvalue 0. For Lsym the indicator vectors are scaled by D/2,
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Input: graph W, number of clusters C'

Compute unnormalized Laplacian L = D — W or normalized Laplacian L., = I — D7'W.
Compute the first C eigenvectors ¢1, ..., ¢c.

Let U = [¢1]...|¢c]. Represent x; by the i-th row in U, for i =1...n.

Use k-means to cluster them under the new representation into C' clusters.

CU o=

What if we do not know the number of clusters? The spectrum of the Laplacian offers some clue. Look
for a large gap (a “jump”) between Ao and A¢y1 for some C. This may be used as a heuristic to pick C.

In practice, the quality of spectral clustering depends on how well W approximates the ideal one-cluster-
per-connected-component graph. This in turn depends on the parameter k or o or € when creating W. There
is unfortunately no principled way to choose those without making assumptions.
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