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The EM Algorithm
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Given labeled examples (x1, y1), . . . , (xl, yl), one can build a classifier. If in addition one has many
unlabeled examples xl+1, . . . , xn, can one use both labeled and unlabeled examples to build a better classifier?
This setting is known as semi-supervised learning. There are many algorithms for semi-supervised learning,
the EM algorithm is one of them. It applies when you have a generative model, but part of the data is
missing.

1 Fully Labeled Data: Naive Bayes Revisited

Recall in Naive Bayes models, we are given a training set (x1, y1), . . . , (xn, yn), and our goal is to train a
classifier that classifies any new document x into one of K classes. In the case of MLE, this is achieved by
estimating parameters Θ = {π, θ1, . . . , θK}, where p(y = k) = πk, and p(x|y = k) = θk, to maximize the
joint log likelihood of the training data:

Θ = arg max
π,θ1,...,θK

log p({(x, y)1:n}|π, θ1, . . . , θK). (1)

The solution is

πk =
∑n

i=1[yi = k]
n

, k = 1, . . . ,K

θkw =

∑
i:yi=k xiw∑

i:yi=k

∑V
u=1 xiu

, k = 1, . . . ,K. (2)

Note π is a probability vector of length K over classes, and each θk is a probability vector of length V over
the vocabulary.

Classification is done by computing p(y|x):

ŷ = arg max
k

p(y = k|x) (3)

= arg max
k

p(y = k)p(x|y = k) ; Bayes rule, ignore constant (4)

= arg max
k

πk

V∏
w=1

θxw

kw (5)

= arg max
k

log πk +
V∑

w=1

xw log θkw ; log is monotonic. (6)

2 When Some or All Labels are Missing: The EM Algorithm

We do not know the true label on unlabeled points. However, we can start from some initial Θ, for example
those trained on labeled data only. We can then assign an unlabeled point xi fractional class labels p(yi =
k|xi,Θ) for k = 1 . . .K. Intuitively, each xi is split into K copies, but copy k has weight γik = p(yi = k|xi,Θ)
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(a) labeled data (b) labeled and unlabeled data (small dots)
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(c) model learned from labeled data (d) model learned from labeled and unlabeled data

Figure 1: In a binary classification problem, if we assume each class has a Gaussian distribution, then we
can use unlabeled data to help parameter estimation.
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instead of one. We now have a dataset with fractional counts, but this is not a problem. One can show that
the new MLE for Θ is a weighted version of (2)

πk =
∑n

i=1 γik

n
, k = 1, . . . ,K

θkw =
∑n

i=1 γikxiw∑n
i=1

∑V
u=1 γikxiu

, k = 1, . . . ,K. (7)

This is the EM (Expectation Maximization) algorithm on a mixture model of multinomial distributions with
2 components:

1. Estimate Θ(t=0) from labeled examples only. It should be point out that EM is sensitive to the initial
parameter Θ(0). One better strategy is random-restart, by trying multiple different initial parameters.

2. Repeat until convergence:

(a) E-step1: For i = 1 . . . n, k = 1 . . .K, compute γik = p(yi = k|xi,Θ(t)).

(b) M-step: Compute Θ(t+1) from (7). Let t = t + 1.

3 EM Optimizes a Lower Bound of the Log Likelihood

EM might look like a heuristic method. However, it is not – EM is guaranteed to find a local optimum of
data log likelihood. Recall if we have complete data {(x, y)1:n} (as in standard Naive Bayes), the joint log
likelihood under parameters Θ is

log p((x, y)1:n|Θ) =
n∑

i=1

log p(yi|Θ)p(xi|yi,Θ). (8)

However, now y1:n are hidden variables. We instead maximize the marginal log likelihood

`(Θ) = log p(x1:n|Θ) (9)

=
n∑

i=1

log p(xi|Θ) (10)

=
n∑

i=1

log
K∑

y=1

p(xi, y|Θ) (11)

=
n∑

i=1

log
K∑

y=1

p(y|Θ)p(xi|y, Θ). (12)

We note that there is a summation inside the log. This couples the Θ parameters. If we try to maximize
the marginal log likelihood by setting the gradient to zero, we will find that there is no longer a nice closed
form solution, unlike the joint log likelihood with complete data. The reader is encouraged to attempt this
to see the difference.

EM is an iterative procedure to maximize the marginal log likelihood `(Θ). It constructs a concave,
easy-to-optimize lower bound Q(Θ,Θ(t)), where Θ is the variable and Θ(t) is the previous, fixed, parameter.
The lower bound has an interesting property Q(Θ(t),Θ(t)) = `(Θ(t)). Therefore the new parameter Θ(t+1)

that maximizes Q is guaranteed to have Q ≥ `(Θ(t)). Since Q lower bounds `, we have `(Θ(t+1)) ≥ `(Θ(t)).

1For simplicity, we adopt the version where one may change the label on labeled points. It is also possible to “pin down”
those labels. The overall log likelihood would then be a sum of log marginal probability log p(x) on unlabeled points, plus log
joint probability log p(x, y) on labeled points.
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The lower bound is obtained via Jensen’s inequality

log
∑

i

pifi ≥
∑

i

pi log fi, (13)

which holds if the pi’s form a probability distribution (i.e., non-negative and sum to 1). This follows from
the concavity of log.

`(Θ) =
n∑

i=1

log
K∑

y=1

p(xi, y|Θ) (14)

=
n∑

i=1

log
K∑

y=1

p(y|xi,Θ(t))
p(xi, y|Θ)

p(y|xi,Θ(t))
(15)

≥
n∑

i=1

K∑
y=1

p(y|xi,Θ(t)) log
p(xi, y|Θ)

p(y|xi,Θ(t))
(16)

≡ Q(Θ,Θ(t)). (17)

Note we introduced a probability distribution p(y|xi,Θ(t)) ≡ γiy separately for each example xi. This is
what E-step is computing.

The M-step maximizes the lower bound Q(Θ,Θ(t)). It is worth noting that now we can set the gradient
of Q to zero and obtain a closed form solution. In fact the solution is simply (7), and we call it Θ(t+1).

It is easy to see that

Q(Θ(t),Θ(t)) =
n∑

i=1

log p(xi|Θ(t)) = `(Θ(t)). (18)

Since Θ(t+1) maximizes Q, we have

Q(Θ(t+1),Θ(t)) ≥ Q(Θ(t),Θ(t)) = `(Θ(t)). (19)

On the other hand, Q lower bounds `. Therefore

`(Θ(t+1)) ≥ Q(Θ(t+1),Θ(t)) ≥ Q(Θ(t),Θ(t)) = `(Θ(t)). (20)

This shows that Θ(t+1) is indeed a better (or no worse) parameter than Θ(t) in terms of the marginal log
likelihood `. By iterating, we arrive at a local maximum of `.

4 A More General View of EM

You might have noticed that we never referred to the specific model p(x|y), p(y) (in this case Naive Bayes)
in the above analysis, except when we find the solution (7). EM is general and applies to joint probability
models whenever some random variables are missing. EM is advantageous when the marginal is difficult to
optimize, but the joint is. To be general, consider a joint distribution p(X, Z|Θ), where X is the collection
of observed variables, and Z unobserved variables. The quantity we want to maximize is the marginal log
likelihood

`(Θ) ≡ log p(X|Θ) = log
∑
Z

p(X, Z|Θ), (21)
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which we assume to be difficult. One can introduce an arbitrary distribution over hidden variables q(Z),

`(Θ) =
∑
Z

q(Z) log P (X|Θ) (22)

=
∑
Z

q(Z) log
P (X|Θ)q(Z)P (X, Z|Θ)

P (X, Z|Θ)q(Z)
(23)

=
∑
Z

q(Z) log
P (X, Z|Θ)

q(Z)
+

∑
Z

q(Z) log
P (X|Θ)q(Z)
P (X, Z|Θ)

(24)

=
∑
Z

q(Z) log
P (X, Z|Θ)

q(Z)
+

∑
Z

q(Z) log
q(Z)

P (Z|X, Θ)
(25)

= F (Θ, q) + KL(q(Z)‖p(Z|X, Θ)). (26)

Note F (Θ, q) is the RHS of Jensen’s inequality. Since KL ≥ 0, F (Θ, q) is a lower bound of `(Θ).
First consider the maximization of F on q with Θ(t) fixed. F (Θ(t), q) is maximized by q(Z) = p(Z|X, Θ(t))

since `(Θ) is fixed and KL attends its minimum zero. This is why we picked the particular distribution
p(Z|X, Θ(t)). This is the E-step.

Next consider the maximization of F on Θ with q fixed as above. Note in this case F (Θ, q) = Q(Θ,Θ(t)).
This is the M-step.

Therefore the EM algorithm can be viewed as coordinate ascent on q and Θ to maximize F , a lower
bound of `.

There are several variations of EM:

• Generalized EM (GEM) finds Θ that improves, but not necessarily maximizes, F (Θ, q) = Q(Θ,Θ(t)) in
the M-step. This is useful when the exact M-step is difficult to carry out. Since this is still coordinate
ascent, GEM can find a local optimum.

• Stochastic EM: The E-step is computed with Monte Carlo sampling. This introduces randomness into
the optimization, but asymptotically it will converge to a local optimum.

• Variational EM: q(Z) is restricted to some easy-to-compute subset of distributions, for example the
fully factorized distributions q(Z) =

∏
i q(zi). In general p(Z|X, Θ(t)), which might be intractable to

compute, will not be in this subset. There is no longer guarantee that variational EM will find a local
optimum.
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