
CS769 Spring 2010 Advanced Natural Language Processing

Information Theory

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

In this lecture we will learn about entropy, mutual information, KL-divergence, etc., which are useful
concepts for information processing systems.

1 Entropy

Entropy of a discrete distribution p(x) over the event space X is

H(p) = −
∑
x∈X

p(x) log p(x). (1)

When the log has base 2, entropy has unit bits. Properties: H(p) ≥ 0, with equality only if p is deterministic
(use the fact 0 log 0 = 0). Entropy is the average number of 0/1 questions needed to describe an outcome
from p(x) (the Twenty Questions game). Entropy is a concave function of p.

For example, let X = {x1, x2, x3, x4} and p(x1) = 1
2 , p(x2) = 1

4 , p(x3) = 1
8 , p(x4) = 1

8 . H(p) = 7
4 bits.

This definition naturally extends to joint distributions. Assuming (x, y) ∼ p(x, y),

H(p) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (2)

We sometimes write H(X) instead of H(p) with the understanding that p is the underlying distribution.
The conditional entropy H(Y |X) is the amount of information needed to determine Y , if the other party

knows X.
H(Y |X) =

∑
x∈X

p(x)H(Y |X = x) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x). (3)

From above, we can derive the chain rule for entropy:

H(X1:n) = H(X1) + H(X2|X1) + . . . + H(Xn|X1:n−1). (4)

Note in general H(Y |X) 6= H(X|Y ). When X and Y are independent, H(Y |X) = H(Y ). In particular
when X1:n are independent and identically distributed (i.i.d.), H(X1:n) = nH(X1).

2 Mutual Information

Recall the chain rule H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ), from which we see that

H(X)−H(X|Y ) = H(Y )−H(Y |X). (5)

This difference can be interpreted as the reduction in uncertainty in X after we know Y , or vice versa. It is
thus known as the information gain, or more commonly the mutual information between X and Y :

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (6)

Mutual information satisfies I(X;Y ) = I(Y ;X) ≥ 0. Entropy is also called self-information because
I(X;X) = H(X): knowing X gives you all information about X!
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3 KL-Divergence

The Kullback-Leibler (KL) divergence, also called relative entropy, FROM p TO q is

KL(p‖q) =
∑

x

p(x) log
p(x)
q(x)

. (7)

It is often used as a measure of “distance” between the two distributions p, q. However KL-divergence is not
a metric in that it is asymmetric, and it does not satisfy the triangle inequality:

KL(p‖q) = KL(q‖p) NOT always true (8)
KL(p‖q) ≤ KL(p‖r) + KL(r‖q) NOT always true for all r. (9)

It has the following properties: KL(p‖q) ≥ 0, KL(p‖q) = 0 iff p = q. It is well-defined even if p has less
support than q because 0 log(0/qi) = 0. But it is unbounded if q has less support than p since pi log(pi/0) =
∞.

If the data is generated from some underlying distribution p (e.g. words in a language), and one wants
to find the Maximum Likelihood estimate (MLE) θML of p under some model (e.g. unigram), in the limit
of infinity data it is equivalent to minimizing the KL-divergence from p to θ:

θML = arg min
θ

KL(p‖θ). (10)

Mutual information and KL-divergence are connected:

I(X;Y ) = KL(p(x, y)‖p(x)p(y)). (11)

Intuitively, if X, Y are independent, p(x, y) = p(x)p(y), and the KL-divergence is zero, and knowing X gives
zero information gain about Y .

The Jensen-Shannon divergence (JSD) is symmetric. It is defined as

JSD(p, q) =
1
2
KL(p‖r) +

1
2
KL(q‖r), (12)

where r = (p + q)/2.
√

JSD is a metric.

4 Cross Entropy

Say x ∼ p(x) (e.g., the true underlying distribution of language), but we model X with a different distribution
q(x) (e.g., a unigram language model). The cross entropy between X and q is

H(X, q) = H(X) + KL(p‖q) = −
∑

x

p(x) log q(x). (13)

This is the average length of bits needed to transmit an outcome x, if you thought x ∼ q(x) (and build
an optimal code for that), but actually x ∼ p(x). KL(p‖q) is the extra price (bits) you pay for the model
mismatch.

5 The Entropy Rate of a Language

The entropy of a word sequence of length n is

H(w1:n) = −
∑
w1:n

p(w1:n) log p(w1:n). (14)
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This quantity depends on n, so a length normalized version is known as the entropy rate of a language L,
when n approaches infinity:

H(L) = lim
n→∞

1
n

H(w1:n) = lim
n→∞

− 1
n

∑
w1:n

p(w1:n) log p(w1:n). (15)

The Shannon-McMillan-Breiman theorem states that the above entropy rate can be computed with

H(L) = lim
n→∞

− 1
n

log p(w1:n), (16)

when w1:n is sampled from p. Basically ONE typical sequence is enough. Note p appeared twice above: once
to generate the sequence w1:n, and once to compute the probability p(w1:n).

In reality we never know p, but we have a corpus w1:n sampled from p. We nevertheless have a language
model q, from which we can compute the cross entropy rate of the language:

H(L, q) = lim
n→∞

− 1
n

log q(w1:n). (17)

It can be shown that H(L, q) ≥ H(L). The better q is, the tighter the upper bound. And because we only
have a finite corpus, we end up with an approximation

H(L, q) ≈ − 1
n

log q(w1:n). (18)

For example, English letters (a-z, space) has been estimated to have the following cross entropy:
q cross entropy (bits)
0-gram 4.76 (uniform, log2 27)
1-gram 4.03
2-gram 2.8
IBM word trigram 1.75
Shannon game (human) 1.3

Perplexity is related by PP (L, q) = 2H(L,q).
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