CS769 Spring 2010 Advanced Natural Language Processing
Information Theory

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

In this lecture we will learn about entropy, mutual information, KL-divergence, etc., which are useful
concepts for information processing systems.

1 Entropy

Entropy of a discrete distribution p(z) over the event space X is
H(p)=—>_ p(x)logp(x). (1)
zeX

When the log has base 2, entropy has unit bits. Properties: H(p) > 0, with equality only if p is deterministic
(use the fact 0log0 = 0). Entropy is the average number of 0/1 questions needed to describe an outcome
from p(x) (the Twenty Questions game). Entropy is a concave function of p.
For example, let X = {21, 22, 25,24} and p(x1) = %,p(mg) = %,p(xg) = %,p(m) = %. H(p) = % bits.
This definition naturally extends to joint distributions. Assuming (z,y) ~ p(z,y),

H(p)=—->_ > plxy)logp(x,y). (2)

zeX yeY

We sometimes write H(X) instead of H(p) with the understanding that p is the underlying distribution.
The conditional entropy H(Y|X) is the amount of information needed to determine Y, if the other party

knows X.
H(Y|X) =Y p@)HY|X =) == > p(x,y)logp(y|z). (3)
zeX zeX yey

From above, we can derive the chain rule for entropy:
H(X1.,) =H(X1)+ HX2|X1) + ...+ HXn| X1:m-1)- (4)

Note in general H(Y|X) # H(X|Y). When X and Y are independent, H(Y|X) = H(Y). In particular
when Xj.,, are independent and identically distributed (i.i.d.), H(X1.,) = nH(X1).

2 Mutual Information
Recall the chain rule H(X,Y) = H(X)+ H(Y|X) = HY) + H(X]Y), from which we see that
H(X)-HX|Y)=H(Y)—- H(Y|X). (5)

This difference can be interpreted as the reduction in uncertainty in X after we know Y, or vice versa. It is
thus known as the information gain, or more commonly the mutual information between X and Y:

1(X;Y) = H(X) — H(X|Y) = H(Y) — HY|X) = 3 pla, ) log 2222 (6)

p(@)p(y)

Mutual information satisfies I(X;Y) = I(Y;X) > 0. Entropy is also called self-information because
I(X;X) = H(X): knowing X gives you all information about X!



Information Theory 2

3 KL-Divergence
The Kullback-Leibler (KL) divergence, also called relative entropy, FROM p TO ¢ is

L(pllq) = Zp log (7)
It is often used as a measure of “distance” between the two distributions p, q. However KL-divergence is not

a metric in that it is asymmetric, and it does not satisfy the triangle inequality:

KL(pllq) = KL(q|lp) NOT always true (8)
KL(pllg) < KL(p|r)+ KL(r||g) NOT always true for all r. (9)

It has the following properties: KL(p|lq) > 0, KL(p|lq) = 0 iff p = g. It is well-defined even if p has less
support than ¢ because 0log(0/¢;) = 0. But it is unbounded if ¢ has less support than p since p; log(p;/0) =
0.

If the data is generated from some underlying distribution p (e.g. words in a language), and one wants
to find the Maximum Likelihood estimate (MLE) 6% of p under some model (e.g. unigram), in the limit
of infinity data it is equivalent to minimizing the KL-divergence from p to 6:

oML — argngn KL(p|). (10)

Mutual information and KL-divergence are connected:
I(X;Y) = KL(p(z,y)lp(z)p(y))- (11)
Intuitively, if X, Y are independent, p(x,y) = p(z)p(y), and the KL-divergence is zero, and knowing X gives

zero information gain about Y.
The Jensen-Shannon divergence (JSD) is symmetric. It is defined as

ISD(p,0) = S KLl + SKL(alr), (12)

where = (p+ ¢q)/2. VJSD is a metric.

4 Cross Entropy

Say x ~ p(z) (e.g., the true underlying distribution of language), but we model X with a different distribution
q(z) (e.g., a unigram language model). The cross entropy between X and ¢ is

H(X,q) = H(X) + KL(pllg) = Zp )log q(x (13)

This is the average length of bits needed to transmit an outcome z, if you thought z ~ ¢(x) (and build
an optimal code for that), but actually  ~ p(x). KL(p|q) is the extra price (bits) you pay for the model
mismatch.

5 The Entropy Rate of a Language

The entropy of a word sequence of length n is

H<w1271) = - Z p(wl:n) 1ng(lul:n)~ (14)

Wi:n



Information Theory 3

This quantity depends on n, so a length normalized version is known as the entropy rate of a language L,
when n approaches infinity:

1 . 1
H(L) = lim —H(wi;) = lim —— > p(win) log p(wren). (15)
W1i:n

The Shannon-McMillan-Breiman theorem states that the above entropy rate can be computed with

H(L) = lim 1 log p(w1.,), (16)
n—oo N
when wj ., is sampled from p. Basically ONE typical sequence is enough. Note p appeared twice above: once
to generate the sequence wj.,,, and once to compute the probability p(w1.y).
In reality we never know p, but we have a corpus wi., sampled from p. We nevertheless have a language
model ¢, from which we can compute the cross entropy rate of the language:

1
H(L,q) = lim —glogq(wlm). (17)

n—oo

It can be shown that H(L,q) > H(L). The better ¢ is, the tighter the upper bound. And because we only
have a finite corpus, we end up with an approximation

H(Lq) =~ loga(uwr.). (18)
For example, English letters (a-z, space) has been estimated to have the following cross entropy:
q cross entropy (bits)
0-gram 4.76 (uniform, log, 27)
1-gram 4.03
2-gram 2.8
IBM word trigram 1.75

Shannon game (human) 1.3
Perplexity is related by PP(L,q) = 2H#(5:9),
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