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This is a “just enough” quick reference. For details, please consult standard textbooks.

1 Probability

The probability of a discrete random variable A taking the value a is P (A = a) ∈ [0, 1]. Sometimes written
as P (a) when no danger of confusion.

Normalization
∑

all a P (A = a) = 1.

Joint probability P (A = a,B = b) = P (a, b), the two events both happen at the same time.

Marginalization P (A = a) =
∑

all b P (A = a,B = b), “summing out B”.

Conditional probability P (a|b) = P (a,b)
P (b) , a happens given b happened.

The product rule P (a, b) = P (a)P (b|a) = P (b)P (a|b).

Bayes rule P (a|b) = P (b|a)P (a)
P (b) . In general P (a|b, C) = P (b|a,C)P (a|C)

P (b|C) where C can be one or more ran-
dom variables. In the special case when θ is model parameter, D is observed data, we have

p(θ|D) =
p(D|θ)p(θ)

p(D)
,

where p(θ) is called the prior, p(D|θ) the likelihood function (of θ, not normalized:
∫

p(D|θ) dθ 6= 1),
p(D) =

∫
p(D|θ)p(θ) dθ the evidence, and p(θ|D) the posterior.

Independence: iff A and B are independent, the product rule can be simplified as P (a, b) = P (a)P (b).
Equivalently, P (a|b) = P (a), P (b|a) = P (b).

A continuous random variable x has a probability density function (pdf) p(x) ∈ [0,∞]. Note unlike discrete
r.v., here it is possible for p(x) > 1 because it is a probability density, not a probability mass.

P (x1 < X < x2) =
∫ x2

x1

p(x) dx

Since P (x1 < X < x2) is the probability mass of X in the interval (x1, x2), it must be between [0, 1].∫ ∞

−∞
p(x) dx = 1

p(x) =
∫ ∞

−∞
p(x, y) dy

1
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The expectation (“mean” or “average”) of a function f under the probability distribution P is

EP [f ] =
∑

a

P (a)f(a)

Ep[f ] =
∫

x

p(x)f(x) dx

In particular if f(x) = x, this is the mean of the random variable x.

The variance of f is Var(f) = E[(f(x) − E[f(x)])2] = E[f(x)2] − E[f(x)]2. The standard deviation is
std(f) =

√
Var(f).

The covariance between x, y is Cov(x, y) = Ex,y[(x− E[x])(y − E[y])] = Ex,y[xy]− E[x]E[y].

x, y can be vectors. E[x] is the mean vector. Cov(x, y) is the covariance matrix with i, j-th entry being
Cov(xi, yj).

2 Distributions

Uniform distribution with K outcomes (fair K-sided die): P (A = ai) = 1/K, i = 1, . . . ,K.

Bernoulli distribution on binary variable x ∈ {0, 1} (biased coin with head probability µ): P (x|µ) =
µx(1− µ)(1−x). Mean E[x] = µ, variance Var(x) = µ(1− µ).

Binomial distribution: the probability of observing m heads in N trials of a µ-biased coin. P (m|N,µ) =(
N
m

)
µm(1− µ)N−m, with

(
N
m

)
= N !

(N−m)!m! . E[m] = Nµ, Var(m) = Nµ(1− µ).

Multinomial distribution for K-sided die with probability vector µ = (µ1, . . . , µK), N throws, outcome
counts m1, . . . ,mK :

P (m1, . . . ,mK |µ,N) =
(

N
m1 . . .mK

) K∏
k=1

µmk

k .

Dirichlet distribution (the K-sided dice factory) on K-dimensional probability vectors µ, with K-dimensional
hyper-parameters α > 0:

p(µ|α) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

µαk−1
k .

The gamma function Γ() is a generalization of factorial, with the property Γ(x + 1) = xΓ(x) and Γ(1) = 1.
Dirichlet is the conjugate prior for multinomial.

Gaussian (Normal) distributions
univariate: p(x|µ, σ2) = 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
. Mean µ, variance σ2.

multivariate: p(x|µ,Σ) = (2π)−
D
2 |Σ|− 1

2 exp
(
− 1

2 (x− µ)>Σ−1(x− µ)
)
, where x, µ are D-dimensional vectors,

Σ is a D ×D covariance matrix, |Σ| is the determinant of Σ.
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3 Linear Algebra

Scalar (1× 1), vector (default column vector, n× 1), matrix (n×m). Matrix transpose
(
A>

)
ij

= Aji.

A n × m matrix A times a m × p matrix B is a n × p matrix C, with Cij =
∑m

k=1 AikBkj . Check di-
mensions.

(AB)C = A(BC), A(B + C) = AB + AC, (A + B)C = AC + BC, (A + B)> = A> + B>, (AB)> = B>A>.
Note in general AB 6= BA.

The following is specific to square matrices.

Diagonal matrix: Aij = 0,∀i 6= j. Identity matrix I is diagonal with Iii = 1,∀i. AI = IA = A for all
square A.

Some square matrices have inverses: AA−1 = A−1A = I. (AB)−1 = B−1A−1. (A>)−1 = (A−1)>.

The trace is the sum of diagonal elements (or eigenvalues) Tr(A) =
∑

i Aii.

The determinant |A| is the product of eigenvalues. |AB| = |A||B|, |a| = a, |aA| = an|A|, |A−1| = 1/|A|. A
matrix A is invertible iff |A| 6= 0.

If |A| = 0 for a n × n square matrix A, A is said to be singular. This means at least one column is
linearly dependent on (i.e., a linear combination of) other columns (same for rows). Once all such linearly
dependent columns and rows are removed, A is reduced to a smaller r×r matrix, and r is called the rank of A.

A m × m matrix A has m eigenvalues λi and eigenvectors (up to scaling) ui s.t. Aui = λiui. In gen-
eral λ’s are complex numbers. If A is real and symmetric, λ’s are real numbers, and u’s are orthogonal.
The u’s can be scaled to orthonormal, i.e., length one, so that u>i uj = Iij . The spectral decomposition is
A =

∑
i λiuiu

>
i . For invertible A, A−1 =

∑
i

1
λi

uiu
>
i . This shows why the determinant must be non-zero.

A real symmetric matrix A is positive semi-definite, if its eigenvalues λi ≥ 0, ∀i. Equivalently, ∀x ∈
Rn, x>Ax ≥ 0. It is strictly positive definite if λi > 0, ∀i.

A positive semi-definite matrix has rank r equal to the number of positive eigenvalues. The remaining
n− r eigenvalues are zero.

For vector x ∈ Rn, we have
0-norm: ‖x‖0 = count of nonzero elements
1-norm: ‖x‖1 =

∑n
i=1 |xi|

2-norm (the Euclidean norm, or just ‘the norm’, length: ‖x‖2 =
(∑n

i=1 x2
i

)1/2

∞-norm: ‖x‖∞ = maxn
i=1 |xi|

4 Calculus

The derivative (slope of tangent line) is f ′(x) = df
dx = limδ→0

f(x+δ)−f(x)
δ .

The second derivative (curvature) is f ′′(x) = d2f
dx2 = df ′

dx .

Often used ones: c′ = 0, (cx)′ = c, (cxa)′ = caxa−1, (log x)′ = 1/x, (ex)′ = ex, (f(x)+g(x))′ = f ′(x)+g′(x),
(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).
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The chain rule: df(y)
dx = df(y)

dy
y
dx .

For multivariate function f(x1, . . . , xn), the partial derivative w.r.t. xi is

∂f

∂xi
= lim

δ→0

f(x1, . . . , xi + δ, xi+1, . . . , xn)− f(x1, . . . , xi, xi+1, . . . , xn)
δ

.

The gradient at x = (x1, . . . , xn) is

∇f(x) =


∂f
∂x1
...

∂f
∂xn

 .

The gradient is a vector in the same space as x. It points to ‘higher ground’ in terms of f value.

The second derivatives form a n× n Hessian matrix

∇2f(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


.

Unconstrained optimality conditions:

• necessary conditions: local minima have ∇f(x) = 0 and ∇2f(x) positive semidefinite.

• sufficient conditions: Any point x at which ∇f(x) = 0 and ∇2f(x) positive definite is a local minimum.

A function f is convex, if ∀x, y, λ ∈ [0, 1], f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y). Common convex functions:
c, cx, (x − c)n if n is an even integer, |x|, 1/x, ex. When the second derivative exists, it is non-negative
(positive semi-definite Hessian).

A function f is concave, if ∀x, y, λ ∈ [0, 1], f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y). Common concave
functions: c, cx, −(x− c)n if n is an even integer, log x. When the second derivative exists, it is non-positive
(negative semi-definite Hessian).

If f is convex and differentiable, ∇f(x) = 0 iff x is a global minimum.
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