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Abstract 

I attempt to perform context-sensitive grammar correction 
on frequently confused pairs of words.  This provides a 
machine learning problem with a high dimensional space 
where many factors are irrelevant.  I implement a system 
similar to Winnow-2 to allow for generating a decision 
hyper-plane while still allowing fast online training.  I 
compare the weights from two instances of Winnow to 
determine the correct answer. 

The Algorithm 

The algorithm I use is based on two instances of winnow-2 
running in parallel for the word given and the matching 
pair word.   
 First we define m pairs of confused words P. 
P = (Pα1,Pβ1), (Pα2,Pβ2), … , (Pαm,Pβm) 
d = distance from a word to search = 10 
Θ = target weight = D * 2 = 20 
α = weight update = 2 
D = document, array of words. 
w = weight for a word.  Separate dictionaries for each word 
in a pair, with an initial value of 1 for each element. 
 
Classification: 
 If  the summation of the weights of the nearby words 
exceeds the summation of the weights of the nearby words 
for the opposite word in the pair, then the use is classified 
as correct. Otherwise it is incorrect. 
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If Θ > 0 then the example D[i] is correct. 
Otherwise D[i] is incorrect. 
 
Update:  
 If an example classifies correctly, our weights work well 
and do not need to change. 
 If an example is classified as correct, but was not, then 
for all weights involved, w = w / α  
 If an examples is classified as incorrect, but was correct, 
then for all weights involved, w = w * α 
 

 This algorithm runs in O(N*p*d) time, where n is size of 
the document, p is the number of pairs to look for, and d is 
the width of the search.  I hold d and p constant, so it runs 
in linear time with respect to the size of the document. 
 To train the data I run update on a set of positive 
examples, and then flip the paired word and run it on the 
negative examples for the other paired word. 

Implementation 

My implantation is composed of both a command line 
grammar checker and a plugin for GEdit. 
 To increase the amount of data my algorithm had to 
work with I stripped out all punctuation.  This causes the 
following pairs to not work: (your, you’re) (their, they’re) 
(i.e., e.g.) (its, it’s).  Instead I can phrase them like (your, 
youre). Note that this means that I still can’t use (its,its).  
Some pairs that I originally searched for (climactic, 
climatic) do not exist in the corpus, so I removed them. 

Results 

The training corpus I used was a set of 15 ebooks from 
Project Gutenberg and the Cyberpunk Project, using 5 
books from one author, and the rest from variety of 
sources. If the nearby words had less than 2 previous 
examples, it classifies it with an additional notEnoughInfo 
tag.  If one word is only seen once near a pair, it gives us 
little information.  Due to the sparseness of my data, these 
make a significant portion of the training. 
 
 On a related set of text, with the same author and genre 
as about 1/3 of the training corpus and with online training 
turned off: 
 
Positives- Correct Words 
650/676 correctly classified with enough info 
96.15% Accuracy 
2294/2771 correctly classified without enough info 
82.78% Accuracy 
 
Negatives – Flipped Words 
644 / 675 correctly classified without enough info 



95.41% Accuracy 
2331 / 2752 correctly classified without enough info 
81.07% Accuracy 
 
I believe this is over-training, because an author will 
typically use similar words in his works, especially if I 
include the two sequels to the book in my corpus.  
However, if this algorithm is used for long enough for a 
single person’s grammar correction, it would be beneficial 
if it adapted to their style of writing. 
 
I also tested an unrelated piece of text from a different 
genre with a different author (a medical textbook).   
 
Positives – Correct Words 
703 / 779 correctly classified with enough info 
90.24% correct 
6304 / 8239 correctly classified without enough info 
76.51 % correct 
 
Negatives - Flipped Words 
679 / 779 correctly classified with enough info 
87.16% Accuracy 
6176 / 8239 correctly classified without enough info 
74.96% Accuracy 
 
We can see that this works significantly less well.  This is 
partly because a medical textbook uses a lot of words that 
are not seen in popular literature.  You can see that the 
ratio between enough and not enough info is much worse.  
It is therefore important to train a model using as large a 
corpus as possible, with at least one text that relate to the 
topic. 
 
 

Future Work 

The easiest way to increase the accuracy of algorithm is to 
give it more data, which would mitigate the problem of 
data sparseness.  If online learning is re-enabled, the 
accuracies are far better.  This is because it trains on the 
same document that it is correcting, so language usage is 
closer than any other example I could provide.  This is 
intense overtraining, but during the normal operation of a 
grammar checker with a human running it in a program, 
this data would be available. 

 Additional features that should be considered would be 
to find bigrams and trigrams that include one of the pairs 
within the text.  If the bigram “eat desert” was seen, it is 
likely it should be corrected to be “eat dessert”.  
Unfortunately, this requires a lot more text to train on to 
automatically find these n-grams, something that I did not 
possess.  Alternatively, I could have manually defined 
these relations, but it would have required a lot of work 
and would not adapt well to new data or language patterns. 

 Another feature that could be considered is reuse of 
patterns.  If “run too fast” is seen 10 times in a document, 
it is possible that “run to fast” is a typo.  

 I strip punctuation to get enough similar data.  Using a 
good stemming algorithm instead might produce better 
results.  Also using a part of speech tagger and then adding 
the tags to the feature set should boost performance.  Some 
words are only seen in certain parts of speech, where their 
pair might be used in a different part of speech. 

 For words of up to distance 10 I count as equal weighted 
when training.  The further away a word is from the word 
we are checking, the less likely it is to have the same 
context.  If I change the amount that the weight changes 
when training with respect to the distance from the 
checked word, it can be made to account for this. 
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