

Winnow Based Grammar Correction

Adrian Moore

UW Madison Computer Sciences

302 South Park Street

Madison, WI, 53706

Stewsters@gmail.com

Abstract

I attempt to perform context-sensitive grammar correction
on frequently confused pairs of words. This provides a
machine learning problem with a high dimensional space
where many factors are irrelevant. I implement a system
similar to Winnow-2 to allow for generating a decision
hyper-plane while still allowing fast online training. I
compare the weights from two instances of Winnow to
determine the correct answer.

The Algorithm

The algorithm I use is based on two instances of winnow-2
running in parallel for the word given and the matching
pair word.
 First we define m pairs of confused words P.
P = (Pα1,Pβ1), (Pα2,Pβ2), … , (Pαm,Pβm)
d = distance from a word to search = 10
Θ = target weight = D * 2 = 20
α = weight update = 2
D = document, array of words.
w = weight for a word. Separate dictionaries for each word
in a pair, with an initial value of 1 for each element.

Classification:
 If the summation of the weights of the nearby words
exceeds the summation of the weights of the nearby words
for the opposite word in the pair, then the use is classified
as correct. Otherwise it is incorrect.

Θ = ∑ ������� − ∑ ��
���������

����

��

����

If Θ > 0 then the example D[i] is correct.
Otherwise D[i] is incorrect.

Update:
 If an example classifies correctly, our weights work well
and do not need to change.
 If an example is classified as correct, but was not, then
for all weights involved, w = w / α
 If an examples is classified as incorrect, but was correct,
then for all weights involved, w = w * α

 This algorithm runs in O(N*p*d) time, where n is size of
the document, p is the number of pairs to look for, and d is
the width of the search. I hold d and p constant, so it runs
in linear time with respect to the size of the document.
 To train the data I run update on a set of positive
examples, and then flip the paired word and run it on the
negative examples for the other paired word.

Implementation

My implantation is composed of both a command line
grammar checker and a plugin for GEdit.
 To increase the amount of data my algorithm had to
work with I stripped out all punctuation. This causes the
following pairs to not work: (your, you’re) (their, they’re)
(i.e., e.g.) (its, it’s). Instead I can phrase them like (your,
youre). Note that this means that I still can’t use (its,its).
Some pairs that I originally searched for (climactic,
climatic) do not exist in the corpus, so I removed them.

Results

The training corpus I used was a set of 15 ebooks from
Project Gutenberg and the Cyberpunk Project, using 5
books from one author, and the rest from variety of
sources. If the nearby words had less than 2 previous
examples, it classifies it with an additional notEnoughInfo
tag. If one word is only seen once near a pair, it gives us
little information. Due to the sparseness of my data, these
make a significant portion of the training.

 On a related set of text, with the same author and genre
as about 1/3 of the training corpus and with online training
turned off:

Positives- Correct Words
650/676 correctly classified with enough info
96.15% Accuracy
2294/2771 correctly classified without enough info
82.78% Accuracy

Negatives – Flipped Words
644 / 675 correctly classified without enough info

95.41% Accuracy
2331 / 2752 correctly classified without enough info
81.07% Accuracy

I believe this is over-training, because an author will
typically use similar words in his works, especially if I
include the two sequels to the book in my corpus.
However, if this algorithm is used for long enough for a
single person’s grammar correction, it would be beneficial
if it adapted to their style of writing.

I also tested an unrelated piece of text from a different
genre with a different author (a medical textbook).

Positives – Correct Words
703 / 779 correctly classified with enough info
90.24% correct
6304 / 8239 correctly classified without enough info
76.51 % correct

Negatives - Flipped Words
679 / 779 correctly classified with enough info
87.16% Accuracy
6176 / 8239 correctly classified without enough info
74.96% Accuracy

We can see that this works significantly less well. This is
partly because a medical textbook uses a lot of words that
are not seen in popular literature. You can see that the
ratio between enough and not enough info is much worse.
It is therefore important to train a model using as large a
corpus as possible, with at least one text that relate to the
topic.

Future Work

The easiest way to increase the accuracy of algorithm is to
give it more data, which would mitigate the problem of
data sparseness. If online learning is re-enabled, the
accuracies are far better. This is because it trains on the
same document that it is correcting, so language usage is
closer than any other example I could provide. This is
intense overtraining, but during the normal operation of a
grammar checker with a human running it in a program,
this data would be available.

 Additional features that should be considered would be
to find bigrams and trigrams that include one of the pairs
within the text. If the bigram “eat desert” was seen, it is
likely it should be corrected to be “eat dessert”.
Unfortunately, this requires a lot more text to train on to
automatically find these n-grams, something that I did not
possess. Alternatively, I could have manually defined
these relations, but it would have required a lot of work
and would not adapt well to new data or language patterns.

 Another feature that could be considered is reuse of
patterns. If “run too fast” is seen 10 times in a document,
it is possible that “run to fast” is a typo.

 I strip punctuation to get enough similar data. Using a
good stemming algorithm instead might produce better
results. Also using a part of speech tagger and then adding
the tags to the feature set should boost performance. Some
words are only seen in certain parts of speech, where their
pair might be used in a different part of speech.

 For words of up to distance 10 I count as equal weighted
when training. The further away a word is from the word
we are checking, the less likely it is to have the same
context. If I change the amount that the weight changes
when training with respect to the distance from the
checked word, it can be made to account for this.

References

Golding, A., and Roth, D. eds. 1999. A Winnow Based Approach

to Context-Sensitive Spelling Correction. Machine Learning.:

Springer Netherlands.

