
Impairment Detection using Support Vector Machines

Jordan Walker
Department of Computer Science
University of Wisconsin-Madison

Madison, WI 53715
jwalker@cs.wisc.edu

Abstract

I attempt to detect impairment in users by subjecting them
to a typing test. If the result of the test shows that the user
is classified as impaired, this will be presented to the user to
allow them to decide whether to continue. The technique used
to classify a user is a support vector machine. I find that my
classifier works well on this simple model, though the data is
not filled out enough to predict completely its usefulness.

1. Introduction
Oftentimes a computer user will attempt to accomplish a
task when he would be better suited to wait until they can
completely focus on the task. Such cases include trying
to multi-task, working when too tired, or doing something
while intoxicated. There are many reasons a person would
want to prevent himself or others from working without the
necessary focus.

The detection of these impairments comes down to clas-
sification of a stream of characters. If the user is typing text
that differs from his normal typing in a noticeable way, this
document will be classified as impaired. The question of
what to do if a user is impaired is dependent on the applica-
tion. Sometimes the best response is to lock them out and
tell them to continue when they can do so unimpaired. I also
see this being useful as just a warning, or possibly a trigger
for a different type of test to determine whether the user is
impaired in any way.

In this paper I examine how using support vector ma-
chines to classify a user as impaired/unimpaired based on
text they enter. I will describe the data collection, the design
of the feature vector, and the results of this classifier based
on the data collected.

2. Previous Work
There are several attempts to identify users by their typing
style. I will discuss how this can be useful more in the dis-
cussion section. The topic of user identification yields the
paper Digital Fingerprints(Rehmeyer 2007) which attempts
to look at features in the language of users to enforce some
security rules. The system builds up a users regular typing
patterns and then when they type a password it verifies that

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the user typing in the password is the same user. I also got
some inspiration from a Gmail labs feature which requires
a user to perform a series of math tasks before sending an
email during certain times of the week.

The use of support vector machines to accomplish this
goal of classification is supported by the others(Joachims
1997) who have used it for similar tasks. Categorizing text
input can be used to gain many types of information, in my
case it is used to gather the state of the user typing on the
keyboard.

3. Feature Selection

Designing the features to store the data is a difficult task. To
capture all the data I had to think about how an impaired per-
son might express that when typing. The speed at which they
type, as well as the errors they make are crucial to under-
standing the state of the user. As a result the feature vector
captures the stream of characters typed and the time taken
between characters.

In order to retain the information of the layout of the key-
board, the vector is split up by character. The impairment
might affect the user by causing them to make a mistake on
a certain character (typing a comma instead of a period for
example) and this information should be stored. The frac-
tion of mistakes to correct keystrokes may show areas on the
keyboard where the user had a hard time (left side of key-
board for right handed typing maybe). Lastly, backspaces
are counted to capture whether or not a user is correcting
those mistakes made. The type of impairment will deter-
mine which features contain the useful information; I will
come back to this in the discussion section.

The last portion of the feature vector is timing informa-
tion. Between each keystroke there elapses a certain amount
of time that is recorded in milliseconds. At the end of the
test, the mean and variance of the timings is stored in the
vector. The mean describes approximately how long it took
to for the user to complete the task, while the variance gives
a sense of how consistently the user kept that pace (how
much they varied from the mean). A distracted user may
introduce high variance in times, and this is captured in the
vector.



4. Data Collection
Central to this task of impairment detection is a program
that will collect the data in question. The program displays
a test to the user and captures the character stream from the
keyboard. Perl is used to tie all the pieces together, using the
SVM module for classification and Curses to display and
get characters. The feature vector is calculated after the user
finishes, after which it is written to file. This growing file
of feature vectors can be trained to detect certain types of
impairments if the user carefully trains it.

The support vector machine is trained with all data col-
lected in the dataset and the lib-SVM model file is written.
A linear kernel works best in my tests, though there was no
loss in accuracy compared to the polynomial kernel. Be-
cause each test took a relatively long time to complete, I
was only able to collect 38 data points. I would prefer to
have more data, as the conclusions drawn from the data are
not as strong as they otherwise would be.

Another point that should be brought up is that during
data collection it was easy to be unimpaired, but collect-
ing impaired data resulted in a self-imposed constraint rather
than true impairment. Typing with one hand instead of two
may be realistic (while eating, holding a baby, etc.), but it
does not represent well other types of impairment. Sev-
eral points in the dataset were collected while truly impaired
(nearly falling asleep while typing). These are in the minor-
ity though, so the one handed typing test represents most of
the impaired data. The impact of this will be explored fur-
ther in the results section, but this form of data collection
most likely introduced some form of bias to the data.

5. Results
At this point there is a dataset with 38 data points. I ran
a leave-one-out cross-validation on this dataset to see how
well the support vector machine runs. With a linear kernel
to train the SVM, it gives an accuracy of 100%. As expected
the radial kernel did not work well on this dataset, resulting
in an accuracy only slightly higher than 50%. The impres-
sion that this method works perfectly is troubling though. I
suspect that a couple features dominate the machine, and if a
data point were to rely on other features for correct classifi-
cation (indistinguishable in the dominant features), it would
be missed by this model.

To show that this is the case, I calculated the weights of
the features in the support vector. The mean time taken
feature has a weight of 9.7 × 10−5 and the total time is
5.52×10−4. All other features are negligible in their weight.
This anomaly is more from the training set than the feature
design. The weights of the character features would likely
be significant if the test varied more in time. The strong re-
liance on time as a feature comes because it is much slower
to type with the one handed impairment I imposed on my-
self.

I would like to see what would happen if I removed the
mean time feature and only left the variance. I did not have
the time to run this, but I suspect that it would only be useful
as a feature some of the time, while the rest of the time, the
errors in typing would dominate the result. I will leave this

tweaking of the features to future work.

6. Discussion
Which features contain information about which impair-
ments is something I had to think about when looking at
the results. Mean time seemed to be the dominant feature in
my one-handed vs. two-handed dataset. But if I had instead
done more tests while distracted (perhaps watching a TV
show, or talking to a roommate), then the time may not have
differed so drastically. In this case the errors in the charac-
ter stream might have dominated. There is also the feature
of the count of backspaces. This may not hold much infor-
mation most of the time, but when a user does not use the
backspace key at all, or uses it a lot, that should say some-
thing about their impairment level. A study of many users
and how they type while impaired would be interesting to
look at for this type of information.

Some of the ways that this project could be extended
would have some very interesting applications. Continu-
ally monitoring a user’s typing could be used to detect an
imposter or other security breach. Requiring a user to ver-
ify they are unimpaired before performing a task would en-
sure quality control and enforce a level of high productivity.
These extensions are somewhat distant from the current state
of this project, but getting there would only require some
tweaking and tuning of the approach. The feature vector
should be adjusted to be more mindful of the application in
which it is used as well.

I believe that this type of system could be put in place to
allow the computer to learn more about minor changes in
user behavior. When a user wants to use this information to
keep themselves honest, so to speak, then the power of this
research can really be found. The Gmail labs test is one use
of this idea that shows the validity. If a user doesn’t want to
embarrass himself by sending an email when intoxicated, he
can put the math test in place to prevent it. I picture with the
impairment detection presented here, the user could enable
the monitoring so that when typing the email the text gets
classified as from an impaired user, a warning would pop up
preventing them from sending that email. This is just one
area in which this method could be applied successfully.

References
Joachims, T. 1997. Text categorization with support vector
machines: Learning with many relevant features. Technical
Report 23, Universität Dortmund, LS VIII-Report.
Rehmeyer, J. 2007. Digital fingerprints. Science News
171(2):26–28.


