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Abstract

Compositional  asymmetries  in  circular  bacterial 
chromosomes  exist  on  a  large-scale.   Using  a  sliding 
window to  take  the  average  concentration  of  nucleotides 
across a length equal to one-half of the chromosome (~2.3 
million  characters),  it  is  possible  to  to  split  the  E.  Coli 
genome  into  two  distinct  region:  one  with  a  bias  in  C 
concentration and the other with a bias in G concentration. 
This genome wide asymmetry is known as GC skew and is 
due  to  the  two-stranded  structure  of  the  chromosome.  

What drives this difference in composition?  How is it 
actualized  in  a  given  sequence?   A  generic  method  is 
presented using regular expressions and mutual information 
to  find  embedded  structure  in  these  two  regions.   This 
technique  should  be  able  to  identify  the  still  debated 
explanation of third codon position bias responsible for GC 
skew,  but  might  also  identify  other  possible  explanations 
should they exist.
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Introduction  

Large-scale asymmetries in composition can be found in 
circular  bacterial  genomes.   The  specific  biological 
mechanism  by  which  this  phenomenon  arises  is  not 
entirely certain, but it is hypothesized that a difference in 
mutation  rate  due  to  the  process  of  cell  division  is 
responsible (Nikolaou and Almirantis 2005).  Regardless 
of  the  cause,  understanding  the  nature  by which  such  a 
skew is actualized in the sequence of nucleotides might be 
revealing.  Any bias must not interfere with encoding of 
protein sequences, so it naturally follows the most likely 
mechanism  is  a  third  position  codon  bias  due  to  the 
degenerate  of  nature  of  the  genetic  code  giving  this 
position  less  significance  on the  resulting amino acid.   

Some studies have used statistical methods to show there 
is indeed a third position bias, but many of the studies offer 
contradictory  results.  By  using  GC  skew  to  split  the 
genome into a “C” region and “G” region of comparable 
length, this study uses a generic method employing regular 
expressions combined with mutual  information to search 
the two “documents” for discriminatory features.

 

Base composition 

In most probabilistic models, the pattern of interest comes 
from a particular distribution(s),  while the non-pattern is 
assumed  to  come  from  a  fixed  background  distribution 
representing the entire genome.  The following table shows 
the background for the E. coli genome.

Table 1
Base compositions

A % T % G % C %

Whole: .246 .246 .254 .254

C region: .248 .244 .245 .261

G region: .244 -1.6 .246 .3 .263 7.5 .247 -5.3

How well do these numbers actually represent what is 
happening in the genome?  Simply treating one static set of 
numbers as the genome background probability might be 
an oversimplification given the dynamics present between 
the C and G halves.  

Moving average

By  using  a  smoothing  technique  known  as  a  sliding 
window (aka  moving  average)  to  sample  the  nucleotide 
composition in a buffer of fixed length, a DNA sequence 
can be transformed into continuous measurements of the 
relative levels of concentration of nucleotides as shown in 
the below.

Figure 1
Sliding window using the ½ genome length



Another  visualization  of  the  same  data  highlights  the 
difference in G vs C content along the genome.

Figure 2
Polar plot of sliding window using ½ genome length

The focus of this particular study is on only one window 
size,  but  polar  plots  help identify  trends  which are  also 
present at shorter wavelengths.  

Markov Transitions

Beyond just compositions, what about the order?  Changes 
from one base to the next are known as first-order Markov 
probabilities.  The following table shows these transitions 
for the entire genome alongside the C and G regions.

Table 2
First-order Markov probabilities

A % T % G % C %

Whole:

A .296 .271 .208 .225

T .186 .298 .282 .234

G .227 .217 .230 .326

C .276 .200 .294 .230

C region:

A .295 .272 .202 .230

T .187 .302 .270 .241

G .227 .216 .220 .336

C .281 .197 .284 .238

G region:

A .297 .5 .270 -.7 .215 6 .219 -5.1

T .184 -1.6 .293 -2.9 .296 9.8 .227 -6.1

G .227 -.2 .218 .8 .238 8.3 .317 -5.8

C .270 -3.8 .203 3.2 .305 7.2 .222 -6.8

Long sequences of repeated G nucleotides might account 
for the bias present in the G region.  If that were the case, 
transitions from G->G would increase markedly.  Notice 
how  transitions  to  the  G  nucleotide  increase  uniformly 
when  moving  from  C  to  G  regions,  along  with  a 
corresponding  uniform  decrease  in  transitions  to  the  C 
nucleotide.  No one transition stands out, hence the first-
order properties do not help explain the GC skew.

Second-order Markov transitions

Since one transition does not yield much information, what 
do the transitions between pairs of nucleotides tell us?  The 
following  table  shows  these  second-order  Markov 
transitions for  the entire  genome alongside the C and G 
regions where each row shows transitions from one pair to 
the  next.   For  example,  the  cell  (AA,  xT)  shows  the 
transition from AA -> TT while the cell (GG, xT) shows 
the transition from GG -> GT.  Only four transitions are 
possible out of each pair shown in individual rows.

Table 3
C vs G genome second-order Markov probabilities 

xA xT xG xC

C->G:

AA -.91% 4.69% 10.33% -3.85%

AT 3.13% -1.26% 9.50% -4.35%

AG -2.67% .57% 10.40% -4.54%

AC -1.96% 1.97% 3.28% -2.87%

TA -1.52% 2.50% 2.26% -2.10%

TT -.05% -1.85% 10.30% -6.32%

TG 1.17% -1.16% 8.38% -7.21%

TC -4.65% 6.14% 4.01% -3.75%

GA 0.90% -1.19% 6.56% -4.29%

GT -2.21% -4.36% 13.86% -6.59%

GG -3.73% -3.45% 14.00% -1.55%

GC 2.47% 1.79% 9.78% -9.95%

CA -1/13% -0.86% 8.27% -9.74%

CT -2.37% -5.79% 7.62% -7.07%

CG 3.05% 5.32% 5.48% -8.74%

CC -4.00% 2.25% 10.28% -12.16%

Just  like  in  the  first-order  case,  a  uniform  increase  in 
transitions  to  G  occurs  when  moving  from the  C ->  G 
region, but the probability mass is spread out fairly evenly 
between  all  xG  states.   No  one  transition  adequately 
accounts for the observed bias.

Mutual Information

Since Markov chains fail to explain what is at the root of 
the GC skew, we now turn to more generic patterns.  By 
treating  the  DNA  as  nothing  but  a  text  document  and 
regular expressions as “words” in the DNA vocabulary, a 
very  clean  measure  known as  mutual  information  might 



help identify features of the sequence that can help explain 
the seen asymmetries.

Feature selection is done by selecting words that have 
the highest mutual information with the class variable C, in 
this case positive for the C region and negative for the G 
region.  Wt is a random variable over all word occurrences. 
This method calculates the values of terms by sums over 
word occurrences instead of over documents, so P(c) is the 
number of word occurrences appearing in documents with 
class  label  c  divided  by  the  total  number  of  word 
occurrences;  P(ft)  is  the number of  word occurrences  of 
word wt divided by the total number of word occurrences; 
and P(c,ft) is the number of word occurrences of word  wt 

that also appear in document with class label c divided by 
the  total  number  of  word  occurrences.   Average  mutual 
information is the difference between the entropy of class 
variable,  H(C),  and  the  entropy  of  the  class  variable 
conditioned on the absence or presence of the word, H(C|
Wt) (Cover and Thomas 1991):

I C ;W t = H C −H C∣W t
= −∑

c∈C
P c log P c 

 ∑
f t∈{0,1}

P  f t∑
c∈C

P c∣ f tlog P c∣ f t

=∑
c∈C
∑

f t∈{0,1}
P c , f t log

P c , f t
P c P  f t



This particular formulation works well  since the same 
“words” in DNA appear numerous times in both classes of 
documents.  Also, given that we are searching for the most 
general explanation of these regions and not bias due to 
one particular instance of the chromosome, several strains 
of  the  E.  Coli  genome  were  used  as  input,  each  split 
according to its own C and G regions.

Exact Patterns

Before trying to find generic patterns, the first step is to 
confirm  mutual  information  can  indeed  find  the  most 
elementary explanation.   The first  experiment performed 
tests  all  permutations  of  nucleotides  for  lengths  between 
one to six, referred to here as “exact” patterns.  Increasing 
the  length  of  word  beyond  this  not  only  substantially 
lengthens the computation time due to exponential growth 
of  permutations,  but  it  also  substantially  decreases  the 
expected number of counts, which is in opposition to our 
goal of finding the most general explanation.

What should we expect to see?  If  a particular  repeat 
sequence such as “GGGCGG” were the culprit, it should 
appear near the top of the list.  If no such singular exact 
pattern exists, we should expect to see things like “G” and 
“GG” having the highest rank as indeed can be seen in the 
results  shown  in  Table  4.   Note  that  all  results  shown 

henceforth  were  pruned  if  they  failed  to  pass  the  Chi-
squared test, which accounts for differences in the number 
of  times  a  particular  pattern  is  expected  to  appear  in  a 
given length of DNA sequence.  Rank is derived first by 
sorting  on  mutual  information,  then  by  the  Chi-squared 
value, and then by length of sequence.

Table 4
Mutual  information  results  for  all  permutations  of 
nucleotide sequences between length 1-6
Rank Rank

1 G 11 GGG

2 GG 12 GGCG

3 C 13 CCC

4 CA 14 GTGG

5 CC 15 GGC

6 GTG 16 GT

7 TG 17 GGGG

8 TGG 18 GGGC

9 CAC 19 GA

10 CCA 20 GCCC

By including all possible permutations, we have not let 
our  assumptions  bias  the  outcome,  but  rather  have  let 
mutual information prove itself as an effective formalism. 
With this positive confirmation using trivial  patterns, we 
can now turn to more interesting trials.

Structure Patterns

Given the strand bias should not interfere with coding of 
proteins, the only explanation fitting with the genetic code 
would be a change in the third position of  codons since 
such  a  mutation  typically  does  not  alter  the  amino  acid 
sequence due to the degenerate nature of the genetic code 
where  ATA, ATT, ATG, ATC can all  encode the same 
thing.   Using  our  generic  pattern  method,  we  can  test 
“structure” patterns such as “GOOGOOG”, where O can 
be any nucleotide (using “O” to keep clear alignment in 
tables to follow).  By building many permutations of such 
periodic  structure  patterns  to  search  each  document,  we 
should finally be able to find different explanations for the 
G rich region.

Method A of Pattern Construction
For  the  purposes  of  reasonable  computation  time  and 
leveraging  the  permutation  algorithms  developed  in  the 
testing phase,  a simple approach was taken to insert  1-n 
wild  cards  between  each  nucleotide  of  the  previously 
generated nucleotide sequences.  For example, the length 
three  exact  permutation  “GGG”  led  to  “GOGOG”, 
“GOOGOOG”, GOOOGOOOG”, etc. up to n wild cards. 
This  does  exclude  many  other  possibilities  such  as 
“GGOG”, GOGG”, “GOGOOG”, etc..  



Method B of Pattern Construction
For  longer  sequences  beyond five  nucleotides  in  length, 
method A suffers from the same exponential explosion of 
permutations mentioned with exact patterns, this time even 
worse  due  to  each  exact  sequence  spawning  even  more 
permutations  when  wild  cards  of  different  lengths  are 
included.  Also, the execution time to search for regular 
expressions increases greatly with length and the number 
of  wild  cards.   Since  the  goal  is  to  test  long  structure 
patterns, “method B” generated all exact permutations of 
length eleven, and then pruned for those containing greater 
than an 80% concentration of G.  This greatly reduced the 
number  of  test  patterns  while  still  generating  some 
variation in the mutations of long sequences.

Results

The result of using method A with sequences length 2-5 
and number of wild cards 1-8 can be seen in table 5.  The 
total size of such a vocabulary is 10,080.  

Table 5
Mutual information results for method A
Rank Rank

1 GOG 11 COOC

2 GOOG 12 COCOC

3 GOOGOOG 13 GOOOGOOOG

4 COC 14 GOGOT

5 GOOOG 15 COOCOOC

6 GOGOG 16 GOOOOOOG

7 GOOOOOG 17 TOGOG

8 GOOOOG 18 AOGOG

9 GOOGOOGOOG 19 GOOOOOOOOG

10 GOOOOOGOOOOOG 20 GOOOOOOOOGOOOOOOOOG

The first observation is that G and C patterns rank the 
highest as is expected.  Results 1, 2, 3, 7, 9, 10, 11, 15, 19, 
and  20  all  support  the  third  position  mutation  bias 
hypothesis by containing either 1, 2, or 5 wild cards, which 
leaves the first  and second position unaltered.  It  is also 
very interesting how 10 and 20 have such high rank though 
they are much longer patterns, thus supporting the idea that 
periodic  structure  plays  a  key role in  the observed bias. 
The  strongest  support  for  third  position  bias  is  clearly 
shown by top three ranking words.

The positive results from method A leads one to wonder 
how  even  longer  periodic  chains  rank.   As  previously 
mentioned, method B was developed to effectively prune 
the extremely large vocabulary that can result from such 
brute force word generation.  The second trial used method 
B with sequences length of 11, number of wild cards 1-5, 
and a G concentration of at least 80%.  In an attempt to 
make  the  structure  more  readable  in  such  long  chains, 
patterns were split into two row entries, where necessary 
“_” was inserted at the front to help align repeated parts 
within one sequence. 

Table 6
Mutual information results for method B
Rank

1 GOOGOOGOOGOOTOOGOOGOOGOOGOOGOOG

2 GOOOOOGOOOOOGOOOOOTOOOOOGOOOOOG

 _OOOOOGOOOOOGOOOOOGOOOOOGOOOOOG

3 GOOOOOGOOOOOGOOOOOGOOOOOGOOOOOG

 _OOOOOGOOOOOGOOOOOGOOOOOGOOOOOG

4 GOOOGOOOGOOOGOOOGOOOG

 _OOOTOOOGOOOGOOOGOOOG

5 GOOGOOGOOGOOGOOGOOCOOGOOGOOGOOG

Results 1, 2, 3, and 5 all exhibit a repeated third position 
structure  as  can  be  easily  detected  visually  by  the 
alignment  of  the  Gs.   Though  space  limited  the  results 
shown, eight out of the top ten has either two or five wild 
cards,  thus  conforming  to  the  same  general  periodic 
structure.  Though other methods exist, mutual information 
is  a  very straight  forward  formulation to  search  for  any 
such structured pattern in a generic fashion, here finding 
good evidence that a third position codon bias is  indeed 
related to the observed large-scale GC skew found in the E. 
coli chromosome.

Future Work

A more elegant approach would be to build up promising 
structures from smaller, high ranking seed patterns using 
genetic  algorithms.   If  an  alignment  of  the  longest 
subsequence were  done between pairs  of  winning seeds, 
then  each  round could  recombine  by  keeping  conserved 
subsequences,  generalizing any differences,  and adding a 
stochastic  element.   Many  such  rounds  of  competition 
would more effectively prune the large search space with 
less prior assumptions made than the methods used here.
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