
A Similarity Web Search Engine

Mengmeng Chen
Computer Science Department

University of Wisconsin-Madison
Wisconsin, 53706

Abstract

Traditional search engines (i.e., Google web search engine)
use keywords and perform exact matching to find the target
web pages and assign each page with some priority using
some algorithms (i.e., PageRank) to capture the popularity.
However, there are two problems with this kind of search-
ing. First, it treats the input as individual words instead of a
whole document. Second, it performs exact match such that
the found pages actually contain all the key words from the
user input rather than try to find similar pages that could still
render some related information of what the user is trying to
look for. This paper describes a project that aims at imple-
menting a web document similarity search engine. Instead of
using the input as independent individual words, the engine
takes input in the form of document. Furthermore, the match-
ing between the input document and all other pages which are
also treated as documents is performed based on the similar-
ity between each other. The results are also ranked based their
similarities to the original document. Moreover, to make the
results easier to read for the user, LDA (Latent Dirichlet Allo-
cation) is performed on the pages, where each is shown with
a label of a sequence of keywords that reveals the its main
topic.

Introduction
Web search engine is one of most useful services when users
use the Internet. It provides its users the extreme conve-
nience in retrieving information from the Internet. Users
with the help of web search engine can fish out a lot of infor-
mation that are of particular interest to himself/herself with-
out having to go through numberless web pages which is
infeasible.

Most of the modern search engines (such as Google web
search engine) take input in the form of keywords and per-
form exact matching between the entire keyword set to the
content of target web page. When the related pages are
found, the search engine will apply certain algorithm to al-
locate each page with certain priority to help users find the
most useful information quickly.

What is missing here is that it is hard to use this kind of
search engine when the user input is instead of keywords a
short paragraph or an entire document when the user aims

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at finding the ’related’ or ’similar’ web pages. Another no-
ticeable problem is that the result is basically raw web page
without any hint or summary on what the content of the web
page would be. Users who use traditional web search engine
will have to go through a few words context surrounding the
key words that is shown along with the URL of the web
page. Sometimes, it will not provide enough useful infor-
mation to allow the user to determine whether the page is
interesting or not immediately.

All these problems suggest that the interface will be more
user-friendly if the results are could reflect some kind of sim-
ilarity between the input and the output and if the results can
be shown in a more informative manner.

Design
Feature vector
In the area of natural language processing, there are many
standard ways of representing a document in the form of fea-
ture vectors. I have considered two classical feature vector
representations of the input document

Bag of Word Bag of word is a classical feature vector in
natural language processing where each document is repre-
sented by a vector of the size of the entire vocabulary of
the corpus with each bit in the vector is 1 or 0 to indicate
if the document contain the corresponding word or not, re-
spectively. This form of feature vector assume that the oc-
currence of each word is independent to each other and the
order can be permuted without affecting the nature of the
document.

tf.idf A document d can be represented by a tf.idf vector
(many other variations exist, such as raw count vector, or
binary indicator vector). tf is the normalized term frequency,
i.e. word count vector scaled, so that the most frequent word
type in this document has a value of 1.

tfw =
c(w, d)

maxv c(v, d)

where c(w, d) is the count of word w in d. idf is inverse
document frequency.

The idf part is defined as

idfw = log
N

nw

And we have the complete representation in the form of

tf · idfw = tfw × idfw

In my experiment, I have tried both of them and the differ-
ence is not significant and is not very clear that one repre-
sentation is persistently better than the other one.

Similarity metric
To define the similarity of two documents is essentially
equal to try to find a distance metric. Again there are many
candidates as distance metric. One of the most widely used
metric is call cosine similarity, which is defined as

sim(d, q) = cos(θ)
= dT q

||d||·||q||

= dT q√
dT d
√

qT q

where the dot product is defined as

uT v =
V∑

i=1

uivi

LDA labeling
I try to come up with a meaningful label with the results
from the search engine so that the user without further look-
ing into the exact content of the web page can immediately
get a hint of what each web page is about. One way to as-
sign meaningful label to a document is called ’Latent Dirich-
let Allocation’, which is a generative probabilistic model for
collections of discrete data such as text corpora. Essentially,
LDA assumes that each document consists of a mixture of
latent different topics. Each of the topics has its own weight
and its particular multinomial distribution over the vocabu-
lary.

Especially, I think LDA will make a lot of sense in my ap-
plication because the input document usually is long enough
to cover more than one topic. Therefore, the documents that
are similar to the input document may have their similarity
residing in different topics. It would be helpful for the user
to have some labels that render further information about the
results and how they are ’similar’ to the input document.

Experiments
Experiment data
To evaluation the system, I crawled a set of personal web
pages as the experiment data. All the web pages come
from the Computer Science(Engineering) departments from
University of Wisconsin-Madison, Stanford University, UC
Berkeley and etc. The data is chosen particularly within the
domain of computer science domain because given the lim-
ited data set we have, it would be much more easier if the
number of topics can be relatively small and the cosine simi-
larity within the same domain will be more meaningful since
the overlapping between different pages is expected to be
high.

Cosine similarity calculation
I compiled a collection of multiple pages for one person into
a single document and used both BOW and tf.idf to represent
the document. As mentioned earlier no clear conclusion of
which one is better has been observed. When user provide a
document for a user, the cosine similarity will be calculated
between this page to all the other pages and a list of top 10
similar web pages are returned.

LDA training and inference
The LDA model is trained using the LDA software pack-
age acquired from http://www.cs.princeton.edu/ blei/lda-c/.
The package will automatically generate files to indicate the
learned topics and the LDA inference given any specific web
page in the system.

My first training did not work out well because I failed
to get rid of the words that happens too frequently within
the corpus. Not surprisingly these words are usually words
like it, and, that, and etc., which offer little help in differen-
tiating the topic of a document. Therefore, I pruned the top
150 words that occur the most frequently in the corpus and
trained the LDA with 50 different topics. The learned topics
turned out to make much more sense than before.

Figure. 1 shows a typical output of the searching results.
The web pages are ranked with respect of similarity to the
original document.

Conclusion
The experiment shows that the cosine similarity and bag of
word vector is well suited for finding the similar documents.
The similar pages we find are usually from the student, ad-
visor or co-workers with the owner of the input documents.
However, I also noticed that the LDA labels sometimes were
not very conclusive. I have tired to trained the model with
less frequent words cut off or less latent topics but the re-
sults were not obviously improved. I think this was due to
the defect of LDA model itself.

Figure 1: A typical search result

References
Jerry Zhu, Lecture notes for CS769, Computer Science De-
partment, University of Wisconsin-Madison, Wisconsin,
2009.
Christopher M. Bishop, Pattern Recognition and Machine
Learning, Springer Verlag, 2006.

