
gr2ǫλ: A Greeklish-to-Greek converter

Spyros Blanas

Introduction
Greeklish is a transliteration of the Greek language written
using Roman characters. This phenomenon started in the
1980’s, when the Greek language was unfortunately cov-
ered by multiple ASCII extensions (codepages) which were
incompatible. This lead to communication problems, with
users being forced to guess the correct encoding of every
message, document and webpage. Making matters worse,
public discussions were frequently in different encodings,
requiring the user to switch encodings to read each reply in
a threaded conversation.

In the present day, despite the success of Unicode stan-
dardization, Greeklish still is the de facto standard for
electronic communication. It is used almost exclusively
for personal e-mails, instant messages and sometimes even
for business correspondance or marketing e-mails! The
Academy of Athens swiftly criticized the romanization of
the Greek language, considering it “a full-fledged attack
against the classical greek thinking” (aca ). Although this
is an exaggeration, a study shows that most users under 35
consider Greeklish a necessary evil when using the Internet
and every participant in the study has used Greeklish at least
once (Androutsopoulos 1999).

Apart from being aesthetically unpleasent, Greeklish cre-
ates three problems:

• Ambiguity, as the Greek accent symbol (’tonos’) cannot
be represented and is sometimes necessary to discern be-
tween words.

• Comprehension, as some Greek characters do not have
Roman equivalents and therefore Greeklish words require
creative thinking to decipher. In fact, Greeklish has been
shown to require at least 40% more time to read and dis-
ambiguate (?).

• Entity matching problems, as a Greek name and the same
name in Greeklish will be recognized as different by
search engines.

In this class project, I created an open-source automatic
translator that converts Greeklish sentences into real Greek.
I have already programmed a plugin forlibpurple, a

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

popular instant messaging library used by the popular Linux
IM applicationpidgin, among others (lib ).

Related work
Previous research has indicated that three Greeklish writings
are prevalent (Macrakis 1996):

• The phonetic writing, where letters are mapped to the
closest letter sound in English.

• The glyph-based writing, where letters are mapped to Ro-
man characters that visually resemble the Greek writing.

• The keyboard-based writing, where the standard Greek
keyboard layout1 mapping is followed.

Unfortunately, a given person uses a hybrid of all three
writings.

The Institute of Language and Speech Processing (ILSP)
has created an automatic transliteration system (Chalaman-
daris et al. 2006) which has resulted in a spin-off commer-
cial product, sold by Innoetics. The original version of the
system first constructs the phonetic representation of the in-
put, checks if this matches Greek and then converts the pho-
netic representation to the most probable Greek word. Un-
fortunately, the paper is thin on details about the algorithm.

Galatas developed DeGreeklish (Galatas 2008), a C++
library that builds a finite state automaton for the translit-
eration. Unfortunately, the library is combined with the
aspell spell checker, which often makes spelling correc-
tions which result in the conversion of valid English sen-
tences to meaningless Greek.

Algorithms
The first algorithm converts sentences directly from Greek-
lish to Greek. It starts with a lookup table, where each map-
ping between Greeklish-to-Greek characters is indicated.
Then, for each Greeklish character2 the algorithm follows
all paths to valid mappings, greedily following all possible

1Luckily, only one standard existed for keyboard layouts.
2Reality is a little more complicated, as we have to store map-

pings from 2-to-1 and reconsider them only after the next iteration.
For example, suppose the word is “ks” and “ks” may be translated
asξ, “s” may becomeσ and “k” may becomeκ. We need to take
care that we don’t produceξσ.



paths. This exponentially increases the number of words be-
ing considered and produces many non-existent words. I use
the unigram Greek language model to pick the word that is
most likely to occur.

The second algorithm relies on Bayes rule. Ifg is Greek-
lish andǫ is Greek, then I am looking forǫ such that:

argmaxǫp(ǫ|g) =

= argmaxǫp(g|ǫ)p(ǫ) =

= argmaxǫ

∏

i

p(gi|ǫi)p(ǫ) =

= argmaxǫ

∑

i

logp(gi|ǫi) + logp(ǫ)

p(gi|ǫi) is considered to be have uniform probability
among the different ways of converting a Greek word to
Greelish. We will re-examine this assumption during our
experiments.

Dataset
Two issues during this project were creating a language
model and a bilingual dataset.

In order to create a unigram Greek language model, I
crawled the web sites of two popular Greek newspapers, “Ta
Nea” (TaN ) and “To Vima” (ToV ). I retrieved 2GB of doc-
uments, extracted the article text and removed punctuation
and HTML tags. This resulted in a corpus of nearly 5 mil-
lion words, with 157,316 unique words. 73% of the words
appear 5 times or less in the corpus.

A bigger problem is creating a bilingual corpus. Each
document in the bilingual corpus consists of a Greeklish sen-
tence, the equivalent Greek sentence and a mapping for each
character. For this purpose I crawled 300 popular Greek
videos on YouTube, extracting the comments. I manually
removed comments that contained invalid characters and
ASCII art, leaving a corpus of 350,000 words, mostly in
Greeklish. Then, I created a web application for users to in-
put data (add ), where a Greeklish sentence would be shown
and the user would have to transliterate it to Greek and give
the character-to-character mapping. Because of the error-
prone nature of this procedure, I chose to retain only the
sentences for which at least two users gave the same map-
ping and transliteration. Unfortunately, this brings the size
of the dataset down to 911 words, a tiny number for mean-
ingful evaluation.

On the positive side, the small size of the dataset allowed
for manual inspection. 20% of the words are not Greeklish.
Cases of ambiguity arise in our dataset for roughly 3% of
all words. One example is the placement of the accent: The
conjunctionή (“or”) and the pronounη (“the” for feminine
gender nouns). Both are very popular words, but are used
differently. Ann-gram language model might help in distin-
guishing among the two – for example, conjunctions rarely
appear at the beginning of the sentence). Unfortunately, this
is not always true, as in the case of the wordαλλά (”but”)
andάλλα (”other”). The only difference is the placement of
the accent, but ann-gram language model will have a hard
time telling those two words apart. Finally, roughly 10%

Algorithm Time Speed Accuracy
1 34sec 26.79 words/sec 71.9%
2 327sec 2.78 words/sec 75.0%

1+ 34sec 26.79 words/sec 80.1%
DeGreeklish N/A N/A 73.8%

Innoetics 6sec 151.83 words/sec 82.7%

Table 1: Accuracy and speed of algorithms.

of our words in the dataset contain gross spelling mistakes,
a common phenomenon given the hasty nature of internet
communication.

Results
The results are shown in Table 1.

Algorithm 2 has improved accuracy because it tends to
leave unknown words in their original format. When I
tweaked the threshold of Algorithm 1 to reject improbable
Greek words, I managed to improve the accuracy to 80.1%
(see Algorithm 1+, above). Algorithm 2 has a great problem
in 2-to-1 mappings from Greek to Greeklish, as it cannot
detect that the 2-character combination should be treated as
a single character, for transliteration purposes. By tuning
the parameters and the 2-to-1 mappings specifically for the
dataset, Algorithm 2 was accurate 83.4% of the times.

All in all, this dataset proved to be challenging even for
commercial systems because of the significant number of
spelling mistakes and non-Greek words. Algorithm 1+, de-
spite its simplicity, works really well!

Future work
In the immediate future I will develop two plugins for the
popular Mozilla Foundation web browser, Firefox, and their
e-mail application, Thunderbird. I hope to reuse my work
from thelibpurple plugin.

The public project page for this work is at
http://sourceforge.net/projects/gr2el,
were users can already download and build the plugin for
thepidgin IM application.

Acknowledgments
This research has been supported by a grant from EEL/LAK,
a non-profit organization for free / open source software.

References
Academy of Athens. Declaration against efforts for re-
placement of the greek alphabet by the roman.
Bilignual data insertion application.
http://www.cs.wisc.edu/ sblanas/code/type.py.
Androutsopoulos, J. 1999. Lating-greek orthography in
electronic mails: Use and stances. Technical report, Aris-
totle University of Thessaloniki.
Chalamandaris, A.; Protopapas, A.; Tsiakoulis, P.; and
Raptis, S. 2006. All greek to me! an automatic greeklish
to greek transliteration system. In5th International Con-
ference on Language Resources and Evaluation (LREC).



Galatas, G. 2008. Greeklish to greek converter based on
lexicon structures. Master’s thesis, University of Patras.
Who uses libpurple? http://developer.pidgin.im/wiki/WhatIsLibpurple.
Macrakis, M. S., ed. 1996.Greek letters : from tablets to
pixels. Oak Knoll Press.
Ta nea. http://www.tanea.gr.
To vima. http://www.tovima.gr.


