
CS769 Spring 2010 Advanced Natural Language Processing

Support Vector Machines

Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu

Many NLP problems can be formulated as classification, e.g., word sense disambiguation, spam filter-
ing, sentiment analysis, document retrieval, speech recognition, etc. There are in general 3 ways to do
classification:

1. Create a generative model p(y), p(x|y), and compute p(y|x) with Bayes rule. Classify according to
p(y|x). For example Naive Bayes.

2. Create a discriminative model p(y|x) directly. Classify according to p(y|x). For example logistic
regression.

3. Forget about probabilities. Create a discriminant function f : X → Y, and classify according to f(x).
Support Vector Machine (SVM) is such an approach.

1 The Linearly Separable Case

We assume binary classification. The intuition of SVM is to put a hyperplane in the middle of the two
classes, so that the distance to the nearest positive or negative example is maximized. Note this essentially
ignores the class distribution p(x|y), and is more similar to logistic regression.

The SVM discriminant function has the form

f(x) = w>x + b, (1)

where w is the parameter vector, and b is the bias or offset scalar. The classification rule is sign(f(x)), and
the linear decision boundary is specified by f(x) = 0. The labels y ∈ {−1, 1}.

If f separates the data, the geometric distance between a point x and the decision boundary is

yf(x)
‖w‖

. (2)

To see this, note w>x is not the geometric distance between x’s projection on w and the origin: it must be
normalized by the norm of w.

Given training data {(x, y)1:n}, we want to find a decision boundary w, b such that to maximize the
geometric distance of the closest point, i.e.

max
w,b

n
min
i=1

yi(w>xi + b)
‖w‖

. (3)

Note this is the key difference between SVM and logistic regression: they optimize different objectives.
The above objective is difficult to optimize directly. Here is a trick: notice for any ŵ, b̂, the objective is

the same for κŵ, κb̂ for any nonzero scaling factor κ. That is to say, the optimization (3) is actually over
equivalence classes of w, b up to scaling. Therefore, we can reduce the redundancy by requiring the closest
point to the decision boundary to satisfy:

yf(x) = y(w>x + b) = 1, (4)

1

Support Vector Machines 2

which implies all points to satisfy

yf(x) = y(w>x + b) ≥ 1. (5)

This converts the unconstrained but complex problem (3) into a constrained but simpler problem

max
w,b

1
‖w‖ (6)

s.t. yi(w>xi + b) ≥ 1 i = 1 . . . n. (7)

Maximizing 1
‖w‖ is equivalent to minimizing 1

2‖w‖
2, but the latter will prove convenient later. Our problem

now becomes

min
w,b

1
2‖w‖

2 (8)

s.t. yi(w>xi + b) ≥ 1 i = 1 . . . n. (9)

This is known as a quadratic programming problem, where the objective is a quadratic function of the variable
(in this case w), and there are linear inequality constraints. Standard optimization packages can solve such
a problem (but often slowly for high dimensional x and large n). However, we will next derive the dual
optimization problem. The dual problem has two advantages: 1. It illustrate the reason behind the name
“support vector”; 2. It can use the powerful kernel trick.

The basic idea is to form the Lagrangian, and maximize the Lagrangian wrt the Lagrange multipliers
(called dual variables). To this end, we introduce α1:n ≥ 0, and define the Lagrangian

L(w, b, α) =
1
2
‖w‖2 −

n∑
i=1

αi

(
yi(w>xi + b)− 1

)
. (10)

Setting ∂L(w, b, α)/∂w = 0 we obtain

w =
n∑

i=1

αiyixi. (11)

Setting ∂L(w, b, α)/∂b = 0 we obtain

n∑
i=1

αiyi = 0. (12)

Putting these into the Lagrangian and we get the dual objective as a function of α only, which is to be
maximized along with the following constraints,

max
α

− 1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi (13)

s.t. αi ≥ 0 i = 1 . . . n (14)∑n
i=1 αiyi = 0 (15)

This is again a constrained quadratic programming problem. We call (9) the primal problem, and (15) the
dual problem. They are equivalent, but the primal has D+1 variables, where D is the number of dimensions
of x. In contrast, the dual has n variables, where n is the number of training examples. In general, one
should pick the smaller problem to solve. However, as we soon see, the dual form allows so called ‘kernel
trick’.

If we solve the primal problem, our discriminant function is simply

f(x) = w>x + b. (16)

Support Vector Machines 3

If we solve the dual problem, from (11) we see that

f(x) =
n∑

i=1

αiyix
>
i x + b. (17)

Where is b in the dual problem? We have to go back to the constraints (9) and Lagrange multipliers α, and
make use of the KKT condition, which states that at the solution, the primal and dual constraints hold, and
a complementarity condition holds:

αi ≥ 0 (18)
yi(w>xi + b)− 1 ≥ 0 (19)

αi(yi(w>xi + b)− 1) = 0. (20)

The complementarity condition implies that if either αi or yi(w>xi + b) − 1 is strictly positive, the other
must be zero.

This observation is significant. Define the two lines f(x) = 1 and f(x) = −1 to be the margin of the
decision boundary. The complementarity condition states that only data points on the margin will have
a non-zero α. Such points are called support vectors, because they define the decision boundary1. All
other points have α = 0. They can be removed without affecting the solution. This is very different from
logistic regression, which depends on all points. This property is called sparsity, which is quite desirable for
computational reasons: f can be represented by support vectors (17), whose number is usually smaller than
n.

With the support vectors, we can finally compute b. For any support vector xi (αi > 0), the complemen-
tarity condition gives (note 1/yi = yi)

b = yi − w>xi = yi −
n∑

j=1

αjyjx
>
j xi. (21)

It is numerically more stable to average over all support vectors

b =
1

ns.v.

∑
i∈s.v.

yi −
n∑

j=1

αjyjx
>
j xi

 . (22)

2 The Linearly Non-Separable Case

So far we assumed that the training data is linearly separable. However many real datasets are not linearly
separable, and the previous problem (9) has no solution. To handle non-separable datasets, we relax the
constraints by making the inequalities easier to satisfy. This is done with slack variables ξi ≥ 0, one for each
constraint:

yi(w>xi + b) ≥ 1− ξi i = 1 . . . n. (23)

Now a point xi can satisfy the constraint even if it is on the wrong side of the decision boundary, as long as
ξi is large enough. Of course all constraints can be trivially satisfied this way. To prevent this, we penalize
the sum of ξi, and arrive at the new primal problem

min
w,b,ξ

1
2‖w‖

2 + C
∑n

i=1 ξi (24)

s.t. yi(w>xi + b) ≥ 1− ξi i = 1 . . . n (25)
ξi ≥ 0, (26)

1This is for linear-separable datasets. For non-separable datasets, a support vector can be within the margin or even on the
wrong side of the decision boundary.

Support Vector Machines 4

where C is a weight parameter, which needs to be carefully set (e.g., by cross validation).
We can similarly look at the dual problem of (26) by introducing Lagrange multipliers. We arrive at

max
α

− 1
2

∑n
i,j=1 αiαjyiyjx

>
i xj +

∑n
i=1 αi (27)

s.t. 0 ≤ αi ≤ C i = 1 . . . n (28)∑n
i=1 αiyi = 0. (29)

Note the only difference to the linear separable dual problem (15) is the upper bound C on the α’s. As
before, when α = 0 the point is not a support vector and can be ignored. When 0 < α < C, it can be shown
using complementarity that ξ = 0, i.e., the point is on the margin. When α = C, the point is inside the
margin if ξ ≤ 1, or on the wrong side of the decision boundary if ξ > 1.

The discriminant function is again

f(x) =
n∑

i=1

αiyix
>
i x + b. (30)

The offset b can be computed on support vectors with 0 < α < C.

3 The Kernel Trick

The dual problem (29) only involves the dot product x>i xj of examples, not the example themselves. So
does the discriminant function (30). This allows SVM to be kernelized.

Consider the dataset {(x, y)1:3} = {(−1, 1), (0,−1), (1, 1)}, where x ∈ R. This is not a linearly separable
dataset. However, if we map x to a three dimensional vector

φ(x) = (1,
√

2x, x2)>, (31)

the dataset becomes linearly separable in the three dimensional space (equivalently, we have a non-linear
decision boundary in the original space). The map does not actually increase the intrinsic dimensionality
of x: φ(x) lies on a one dimensional manifold in the 3D space. Nonetheless, this suggests a general way to
handle linearly non-separable data: map x to some φ(x). This is complimentary to the slack variables, so
that we can simply replace all x with φ(x) in (29) and (30).

If φ(x) is very high dimensional, representing it and computing the inner product becomes an issue. Here
is when the kernel kicks in. Note the dual problem and its solution (29) and (30) involves inner product of
feature vectors φ(xi)>φ(xj) only. Thus it might be possible to use a feature representation φ(x) without
explicitly representing it, as long as we can compute the inner product. For example, the inner product
of (31) can be computed as

k(xi, xj) = φ(xi)>φ(xj) = (1 + xixj)2. (32)

The computational saving is much bigger for such polynomial kernels k(xi, xj) = (1 + xixj)n with larger n,
where the explicit feature vector has many more dimensions. For the so-called Radial Basis Function (RBF)
kernel

k(xi, xj) = exp
(
−‖xi − xj‖2

2σ2

)
, (33)

the corresponding feature vector is infinite dimensional.
Thus the kernel trick is to replace φ(xi)>φ(xj) with a kernel function k(xi, xj) in (29) and (30). What

functions are valid kernels that correspond to some feature vector φ(x)? They must be so-called Mercer
kernels k : X × X 7→ R, where

1. k is continuous,

2. k is symmetric,

3. k is positive definite, i.e., for any m points x1:m, the m×m Gram matrix K = k(x1:m, x1:m) is positive
semi-definite.

Support Vector Machines 5

4 Odds and Ends

An equivalent formulation to the SVM constrained optimization problem (26) is the unconstrained problem

min
w,b

n∑
i=1

max(1− yi(w>xi + b), 0) + λ‖w‖2. (34)

If we call yi(w>xi + b) the margin of xi, the term max(1− yi(w>xi + b), 0) wants the margin of any training
point to be larger than 1, i.e., having a confident prediction. The term is known as the hinge loss function.
Note the above objective is very similar to L2-regularized logistic regress, just with a different loss function
(the latter uses negative log likelihood loss).

There is no probabilistic interpretation of the margin of a point. There are heuristics to convert margin
into probability p(y|x), which sometimes works in practice, but is not justified in theory.

There are many ways to extend binary SVM to multiclass classification. A heuristic method is 1-vs-rest.
For a K class problem, create K binary classification subproblems: class 1 vs. (2–K), class 2 vs. (1,3–K),
and so on. Solve each subproblem with a binary SVM. Classify xi to the class for which it has the largest
positive margin.

SVM can be extended to regression, by replacing the hinge loss with an ε-insensitive loss.

	The Linearly Separable Case
	The Linearly Non-Separable Case
	The Kernel Trick
	Odds and Ends

