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You want to show that algorithm A is better than algorithm B. You have a dataset D = (x1, y1), . . . , (xn, yn)
to prove it.

1 Do not Use These Methods

Here are some “natural” ideas which, unfortunately, will not support the claim due to the stochastic fluctu-
ation in the dataset D:

• Training set accuracy. Train A on D, test A on D again to get the training set accuracy aA. Repeat
for B to get aB . Show aA > aB . Problems: overfitting, stochastic fluctuation.

• Test set accuracy. Split D into Dtrain and Dtest. Train A, B on Dtrain, get their accuracies on Dtest.
Show aA > aB . Problem: stochastic fluctuation.

• CV accuracy. Perform k-fold cross validation on D with A. Use exactly the same folds on B too. Show
the CV accuracy aA > aB . Problem: stochastic fluctuation. (OK, people actually use this quite often.
But it is better to assess the statistical significance. Read on...)

• Dataset selection. Select and only report experiments on certain datasets D that “worked”. Problem:
Hmm...

2 Statistical Tests

An accepted method is to perform a statistical significance test. The idea is simple. Let us assume that A
and B indeed have the same generalization accuracy. Their CV accuracies aA and aB will still exhibit all
kinds of fluctuations (i.e., be different). If we were to be certain that we do not call A and B different, we
will need to tolerate all possible differences in aA and aB , including very large ones. This is useless, because
if A and another algorithm C is truly different we will not be able to detect that.

However, we expect most of the time aA and aB are “fairly close”. Only rarely do they differ a lot. In
fact, we can find a threshold such that aA and aB differ by that much in only 5% of the times we do the
test. We will call two algorithms different if their CV accuracies differ more than the threshold.

More formally, we entertain two hypotheses:

• H0: The null hypothesis that A and B have the same generalization performance.

• Ha: The alternative hypothesis that A and B have different generalization performance.

If the empirical results aA and aB differ more than the threshold, we reject H0 and adopt Ha. Otherwise,
we retain H0: this does not mean that we believe in H0, but simply that we do not have enough evidence
to say otherwise. Some immediate observations:

• Statistical test does not really test whether Ha is true, i.e., two algorithms have different performance.
It is only concerned with how often (5% in the above) we will call two algorithms with the same
underlying performance different.
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• Being able to say two algorithms are different is a by-product.

• We will make mistakes 5% of the time by calling A and B different, when they in fact have the same
performance. This is known as Type I error.

• We do not know how often we call A and C the same because they fall within the threshold, when they
are truly different. This is Type II error and is not addressed by statistical test (but is important in
practice!).

• One can adjust the 5% figure by changing the threshold. When the threshold is close to zero, it is
easier to say that A and C are different. But A and B will be called different more often too – the
5% figure will increase to, say, 10%. This is less significant (for the difference in A and C). When
the threshold is far from zero, it is very hard for A and C to be called different (therefore harder to
publish...). A and B will be called different much less frequently, say 1%. This is significant (for A
and C). We of course prefer significant results. The default is 5%.

3 Paired t-Test

There are many different tests. In this case, we use a specific test called a paired t-test. Let X1, . . . , Xk ∼
N(µ, σ2) where both µ and σ2 are unknown, and k is relatively small. We want to test H0 : µ = µ0. Let the
sample mean be

X̄k = 1/k

k∑
i=1

Xi, (1)

and the sample variance be

S2
k = 1/(k − 1)

k∑
i=1

(Xi − X̄k)2. (2)

The random variable

T =

√
k(X̄k − µ0)

Sk
(3)

follows a t-distribution with k-1 degree of freedom under H0. When k is somewhat large, T → N(0, 1).
How is this related to our goal? Recall we perform k-fold CV. Let the accuracy in each fold be aA1, . . . , aAk

for algorithm A, and aB1, . . . , aBk for algorithm B. We assume that the pairwise differences xi = aAi−aBi, i =
1 . . . k follow N(0, σ2) under H0. Therefore T has a t-distribution with k−1 degree of freedom. We can look
up the 5% threshold (2-sided) from a table. When T is outside the threshold we reject H0, and claim that
A and B are truly different.

Keep in mind that this procedure has 5% Type I error. That roughly translates to “every 1 in 20 papers
claims an advance that is really not there!”
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