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1 Information Retrieval Tasks

Information Retrieval (IR) covers many aspects of getting information. The
most well-known task is ad hoc retrieval (e.g., Google and Yahoo!), where the
task is to find the most relevant documents for a given user query.

• The document collection is known and (roughly) fixed. For example the
crawled Web.

• The user issues a query, the IR system ranks documents.

• In some cases, the user can provide relevance feedback interactively, e.g.
by labeling the top documents as good or bad. The system then updates
its ranking based on the label information.

• A related technique is called pseudo relevance feedback, where no user
interaction is needed. The system treats the top documents as if they
were all relevant, and reinforces itself. We will see this again in semi-
supervised learning later.

• Meta search tries to merge the ranked list from multiple IR systems.

• Clustering and visualizing search results is important too. Try crane at
clusty.com.

Information filtering is another task (e.g., Google Alert). The user defines in-
formation need beforehand, and the system picks out relevant documents from
a continuous stream. IR extends to images, audio and video too.

2 IR measures

Given a query, a document collection can be divided into 2 parts: those truly
relevant and those not (let us assume it is clear cut). An IR system will retrieve

1



documents it deems relevant, thus dividing the collection into it-thinks-relevant
and it-thinks-not. The two divisions are often not the same! Therefore we have
four counts:

truly relevant truely irrelevant
retrieved true positive (tp) false positive (fp)

not retrieved false negative (fn) true negative (tn)

Two common measures gauge the quality of the IR system:

• Precision
P =

tp

tp + fp
.

How pure are the retrieved documents? Obviously we like a precision close
to 1.

• Recall An IR system can cheat precision by only retrieving the single
most confident document. Since the document will very likely be relevant,
precision will likely to be 1. However there could be hundreds of truly
relevant documents, and a good IR system should get them all. Recall
measures this by

R =
tp

tp + fn
.

Note recall itself is not a good measure either: the IR system can cheat
by returning the whole document collection.

For this reason precision and recall is almost always reported as a pair.
An IR system usually has many tunable parameters. Different parameter

settings result in different P,R value pairs (assuming a fixed document collec-
tion). One can plot these pairs on a precision-recall curve, where by convention
x-axis is recall and y-axis is precision. Note the parameters are hidden and not
shown. PR curve is often used to compare two IR systems: the one with curve
above (and to the right) is superior.

A single number summary of precison and recall is the F-score

F =
2PR

P + R
,

which is the harmonic mean of P,R.
There are many other measures, but P,R, F form the basis.

3 Language Models for IR

There are many ways to do IR. LM is one of them. Given a query q, we want to
rank the documents. We introduce a binary label r for ‘relevant’, and compute
the probability

p(r = 1|q, d)
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that a given document d is relevant to the query q. Ranking by this probability
gives what we want. Applying Bayes rule

p(r = 1|q, d) =
p(d, q|r = 1)p(r = 1)

p(q, d)
. (1)

It will be convenient to consider the log odds ratio, which preserves the ranking:

log
p(r = 1|q, d)
p(r = 0|q, d)

(2)

= log
p(d, q|r = 1)p(r = 1)
p(d, q|r = 0)p(r = 0)

(3)

= log
p(q|d, r = 1)p(d|r = 1)p(r = 1)
p(q|d, r = 0)p(d|r = 0)p(r = 0)

(4)

= log
p(q|d, r = 1)p(r = 1|d)
p(q|d, r = 0)p(r = 0|d)

(5)

= log
p(q|d, r = 1)
p(q|d, r = 0)

+ log
p(r = 1|d)
p(r = 0|d)

(6)

We make the assumption that

p(q|d, r = 1)

is computed from a (document) unigram language model created from d, and
applied to q. That is, we assume the query is “generated” by the relevant
document. Note there will be many separate document LMs.

We make a second assumption that

p(q|d, r = 0) = p(q|r = 0),

which says since d is irrelevant, q, d are conditionally independent. It can be
ignored for ranking.

The term log p(r=1|d)
p(r=0|d) measures how likely a document d is relevant, without

even knowing what query will be asked! It can be viewed as an a priori impor-
tance measure. It can be a constant for all documents, but a more interesting
model made Google famous, as we discuss later.

4 Vector Models for IR

Each document d is represented by a tf ·idf vector (many other variations exist).
tf is normalize term frequency, i.e. word count vector scaled, so that the most
frequent word type in this document has a value 1:

tfw =
c(w, d)

maxv c(v, d)
,
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where c(w, d) is the count of word w in d. idf is inverse document frequency.
Let N be the number of documents in the collection. Let nw be the number of
documents in which word type w appears.

idfw = log
N

nw
.

idf is an attempt to handle stopwords or near-stopwords: if a word (like “the”)
appears in most documents, it is probably not very interesting. Finally

tf · idfw = tfw × idfw.

The query q is represented by a tf · idf vector too. Documents are ranked by
their cosine similarity to q: q and a document d form an angle θ in the tf · idf
vector space, and

sim(d, q) = cos(θ) (7)

=
d>q

‖d‖ · ‖q‖
(8)

=
d>q√

d>d
√

q>q
, (9)

where the dot product

u>v =
V∑

i=1

uivi.
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