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1 The Need for Finding Likely Sentences

Say you're designing a speech recognizer. Why do you prefer
s1 =It’s hard to recognize speech

over
s9 =It’s hard to wreck a nice beach?

The two sentences have the same acoustic signal. We must have some intrinsic
preference over sentences. Language modeling tries to capture the notion that
some sentences are more likely than others by density estimation P(s). In
particular, we want the model to satisfy P(s1) > P(s2) for our examples above.

Similarly, if you are building an Optical Character Recognition (OCR) sys-
tem, there are plenty of ambiguity in input (e.g., 1 vs. 1, 0 vs. O). But we know
that certain letter sequences are more likely than others.

Given input a (be it acoustic sound wave or digitized pixels), the recognition
process can be defined as finding the sentence s that maximizes, among all
sentences, the conditional probability

s* = arggleach(ﬂa). (1)
By Bayes rule, we have
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Note P(a) is a constant w.r.t. the maximization over s, so that the problem
reduces to
s* = argmax P(als)P(s). (3)
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The term P(a|s) describes the probability of sound a that can be produced
from sentence s: this is known as the acoustic model in speech recognition, and
is often a Hidden Markov Model (HMM), as we will discuss later in the class.
The term P(s) is the language model, which we discuss now.



2 Unigram Language Model

In the following we assume words are the basic units, i.e. s = wy ... W, = Wi.p-

A unigram language model makes the strong independence assumption that
words are generated independently from a multinomial distribution 6 (of dimen-
sion V, the size of the vocabulary). That is,

n
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where ¢, is the count of word w in s. This is the multinomial distribution over
¢, except that we do not have the combinatorial coefficient, because we know
the particular sequence.

You might be alarmed that this seems to be a particularly bad model of
language, as it ignores word order and many other information about language!
You are right — more on this later. But it is useful. By the way, the exact chain
rule is

P(w1n|9) = P(w1|9)P(w2|w1, 0)P(’LU3|’LU1:2, 0) N P(wn|w1:n,1, 9), (5)

and you can see the assumption unigram makes.

Technically this is not a complete definition of P(s): there should be a
distribution over sentence length P(n), and P(s) = P(n)P(w1.y,).

The question is: where do we get 7 We estimate it from a corpus of En-
glish sentences. We need a vocabulary of V word types, and counts (redefining
the symbol ¢) ¢1.y of each word type in the corpus. The counts are observed
data, and we want to assess the unknown quantity €, which is naturally the
distribution P(0|c1.v). By Bayes rule,

Plevv|6)P(6)

Plllev) = =525

(6)

where P(c1.v|6) is the multinomial distribution (4).

2.1 The Maximum Likelihood (ML) Estimate

For now let’s take the prior P(6) to be uniform. This gives the mazimum
likelihood estimate (ML or MLE) of 6:

oML = arg max P(er.v|0) (7)
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We are faced with the constrained optimization problem of finding 6;.y:

max ZXZI Cw log 0, (10)
O1.v
subject to 25:1 0., = 1. (11)

The general procedure to solve equality constrained optimization problems
is the following: We introduce a scalar 8 called a Lagrange multiplier (one for
each constraint), rewrite the equality constraint as E(z) = 0, and define a new
Lagrangian function of the form G(x,3) = F(z) — SE(z), where F(z) is the
original objective. Solve for the unconstrained optimization problem on G.

In our case, the Lagrangian is

1% 1%
cwlogly, — O, —1 (12)
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After verifying that this is a concave function, we set the gradient (w.r.t. 01.y
and f3) to zero:
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which gives

oME = v v (15
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where |C| = 25:1 ¢y is the length of the corpus. It can be seen that the
purpose of 3 is normalization. Therefore, in this case the MLE is simply the
frequency estimate!

In practice, however, there is a huge problem with the MLE: if a word type
w is in the vocabulary but not in the corpus (hence ¢,, = 0), the MLE is 6,, = 0.
Any new sentence with w in it will thus have zero probability! The problem is
also known as data sparseness problem. This can be avoided by constructing
the vocabulary from the corpus. But a more principled and satisfying solution
is known as smoothing in the language modeling community, which is related to
shrinkage in statistics, or, in certain cases, arises from an estimate other than
MLE as we show next.

2.2 The Maximum A Posteriori (MAP) Estimate
In (6), the most likely 6 given the corpus ¢;.y and a prior P(6) is

oMAP  —  arg max P(c1.v]0)P(0). (16)
oev—simplex



This is known as the mazimum a posteriori (MAP) estimate. It is the same as
the ML estimate if the prior is uniform, but otherwise is different in general.

One can choose any prior to encode domain knowledge. But the Dirichlet
prior is particularly simple, since it is the conjugate prior of multinomial. A
Dirichlet prior P(6|«) has positive hyper-parameters aq.y. It can be shown that
the MAP estimate is

yap_ __Codfel (17)
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The hyperparameters thus act as “pseudo counts”, i.e. (a,, — 1) can be viewed
as the count of word w we collected before seeing the corpus. Clearly this
avoids the zero probability problem (caution: «,, has to be no less than 1). A
particular choice of hyperparameters o; = 2, Vi results in the so-called “add-one
smoothing”:

ey +1
oMAP _ w T - 18
which is also known as Laplace smoothing, with which Laplace allegedly com-
pute the probability that the Sun will rise again tomorrow. A simple variation
brings “add-e smoothing”. These smoothing methods are not the best in terms
of performance, but are often used because of their simplicity.

3 Evaluating Language Models

How do we know a language model (or a density estimator in general) is good
or bad? The MLE is the ‘best’ (most likely) among all estimates on the training
corpus C = c¢1.y by definition, and MAP seems to be even a bit inferior to MLE.

The answer lies in our interest in future data, not the corpus we trained on.
Any model should give high probability to the kind of text we are interested in,
but not seen in the training corpus. Therefore we assume we have a test corpus
C’, and we hope our 6 gives high probability on any such C’.

Therefore test-set likelihood seems like a good quality measure for §: P(C"|6).
But it is an extremely small number, and depends on the length of C’. A more
useful measure is per-word test-set log likelihood:

1 14
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If we call the actual distribution from which words are drawn p(w), the above
quantity is actually a stochastic approximation to

\%
p(w)log 0., (20)
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which becomes exact when |C'| — co. We will come back to this in the next
lecture.



A derived quantity, known as the perplexity, is widely used in language

modeling:
1

PP(C';6) = 27107 Zv=r 82 0 — p(Crjg) e, (21)

Note log base 2. Perplexity measures on average, how many ‘equally likely’
words we must choose from for each word position — the smaller the number,
the more certain we are, and the better the model 6.

4 N-gram Language Models

We clearly view the order of words as important in the English language. One
can partially incorporate such order into a language model by making weaker
independence assumptions. In particular, for n-gram language model the as-
sumption is

P(wilwii-1) = P(w;|wi—pi1:i-1)- (22)

The conditioning part w;_n41.;—1 is called ‘history’, which has n — 1 previous
words. Compared to the chain rule (5), the n-gram language model dictates
that

n
P(wy:n|0) = H P(wilwi—ny1:i-1,0). (23)
i=1
Unigram is a special case when n = 1. Common names include bigram (n = 2)
and trigram (n = 3). People use the special symbol <s> to denote start-of-
sentence. N-grams normally does not run across sentences.

It is worth noting that the number of parameters in 6 grows rapidly as
O(V™). Another way to look at it is that for a given history h, P(w|h) is
a multinomial of size V, but there are V"' such possible histories, and
consists of all these multinomials. For V' = 10,000 which is typical, in theory
there are 10,000-1 unigram parameters, 10® bigram parameters (compared to
US population 3 x 108), and 10*2 trigrams (about 150 trigrams per person in the
world). In practice, the number of n-grams is bounded by corpus length. But
it should be clear that the data sparseness problem is much more severe with a
larger n, because the histories ‘fragment’ the corpus. Therefore smoothing is of
great importance to n-gram language models.

We have seen MAP estimate as one way of smoothing. Other smooth-
ing techniques interpolate MLE or MAP for P(.|h) with lower order estimates
P(.|W'). There are a large number of specific smoothing methods for language
modeling, e.g., Good-Turing, Jelinek-Mercer interpolated, Katz, Whitten-Bell,
Absolute discounting, and Kneser-Ney.

For document classification, people found that unigram is often sufficient.
Trigrams are the standard for speech recognition. Google recently released
“Web 1T 5-gram” which consists of n-gram counts (up to n = 5) generated
from approximately 1 trillion word tokens of text from publicly accessible Web

pages.



Beyond n-gram type language models, a variety of models have been pro-
posed to try to “put language back into language model”, including class-based
LM, tree LM, grammar-based LM, Maximum entropy LM, whole sentence LM
and so on. However, trigram language model is surprisingly hard to beat.

5 Sampling from a Distribution

We can generate sentences by sampling from the distribution P(s) described by
a language model. We write s ~ P(s) if we select a sentence s at randomly
according to the probability P(s). For a unigram model, the sampling process
is as simple as generating random numbers (word index) from the multino-
mial P(w|@). For n-gram models, we sample from the conditional probability
P(w;|w;—pn41:i—1,0) where w;_, 41,1 are the most recent n — 1 words we just
generated.
Shakespeare unigram (JM p.203):

e To him swallowed confess hear both. Which. Of save on trail for are
ay device and rote life have

e Every enter now severally so, let
e Hill he late speaks; or! a more to leg less first you enter

e Will rash been and by I the me loves gentle me not slavish page, the
and hour; ill let

e Are where exeunt and sighs have rise excellency took of .. sleep knave
we. near; vile like

Bigram:

e What means, sir. I confess she? then all sorts, he is trim, captain.

e Why dost stand forth thy canopy, forsooth; he is this palpable hit the
King Henry. Live king. Follow.

e What we, hath got so she that I rest and sent to scold and nature
bankrupt, nor the first gentleman?

e Enter Menenius, if it so many good direction found’st thou art a strong
upon command of fear not a liberal largess given away, Falstaff! Exe-
unt

e Thou whoreson chops. Consumption catch your dearest friend, wekll,
and I know where many mouths upon my undoing all but be, how
soon, then; we'll execute upon my love’s bonds and we do you will?

Trigram:




e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

This shall forbid it should be branded, if renown made it empty.
e What is’t that cried?
e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of
parting, as they say, ’tis done.

4-gram:

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some
of the watch. A great banquet serv’d in;

Will you not tell me who I am?

It cannot be but so.

e Indeed the short and the long. Marry, ’tis a noble Lepidus.

They say all lovers swear more performance than they are wont to
keep obliged faith unforfeited!




