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Abstract

What if there is a teacher who knows the learning goal and wants to design good
training data for a machine learner? We propose an optimal teaching framework
aimed at learners who employ Bayesian models. Our framework is expressed as
an optimization problem over teaching examples that balance the future loss of the
learner and the effort of the teacher. This optimization problem is in general hard.
In the case where the learner employs conjugate exponential family models, we
present an approximate algorithm for finding the optimal teaching set. Our algo-
rithm optimizes the aggregate sufficient statistics, then unpacks them into actual
teaching examples. We give several examples to illustrate our framework.

1 Introduction

Consider the simple task of learning a threshold classifier in 1D (Figure 1). There is an unknown
threshold θ ∈ [0, 1]. For any item x ∈ [0, 1], its label y is white if x < θ and black otherwise.
After seeing n training examples the learner’s estimate is θ̂. What is the error |θ̂ − θ|? The answer
depends on the learning paradigm. If the learner receives iid noiseless training examples where
x ∼ uniform[0, 1], then with large probability |θ̂ − θ| = O( 1

n ). This is because the inner-most
white and black items are 1/(n + 1) apart on average. If the learner performs active learning and
an oracle provides noiseless labels, then the error reduces faster |θ̂ − θ| = O( 1

2n ) since the optimal
strategy is binary search. However, a helpful teacher can simply teach with n = 2 items (θ −
ε/2,white), (θ + ε/2,black) to achieve an arbitrarily small error ε. The key difference is that an
active learner still needs to explore the boundary, while a teacher can guide.
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n

θ

{{
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passive learning "waits" active learning "explores" teaching "guides"

Figure 1: Teaching can require far fewer examples than passive or active learning

We impose the restriction that teaching be conducted only via teaching examples (rather than some-
how directly giving the parameter θ to the learner). What, then, are the best teaching examples?
Understanding the optimal teaching strategies is important for both machine learning and education:
(i) When the learner is a human student (as modeled in cognitive psychology), optimal teaching
theory can design the best lessons for education. (ii) In cyber-security the teacher may be an adver-
sary attempting to mislead a machine learning system via “poisonous training examples.” Optimal
teaching quantifies the power and limits of such adversaries. (iii) Optimal teaching informs robots
as to the best ways to utilize human teaching, and vice versa.
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Our work builds upon three threads of research. The first thread is the teaching dimension theory by
Goldman and Kearns [10] and its extensions in computer science(e.g., [1, 2, 11, 12, 14, 25]). Our
framework allows for probabilistic, noisy learners with infinite hypothesis space, arbitrary loss func-
tions, and the notion of teaching effort. Furthermore, in Section 3.2 we will show that the original
teaching dimension is a special case of our framework. The second thread is the research on rep-
resentativeness and pedagogy in cognitive science. Tenenbaum and Griffiths is the first to note that
representative data is one that maximizes the posterior probability of the target model [22]. Their
work on Gaussian distributions, and later work by Rafferty and Griffiths on multinomial distribu-
tions [19], find representative data by matching sufficient statistics. Our framework can be viewed
as a generalization. Specifically, their work corresponds to the specific choice (to be defined in Sec-
tion 2) of loss() = KL divergence and effort() being either zero or an indicator function to fix the
data set size at n. We made it explicit that these functions can have other designs. Importantly, we
also show that there are non-trivial interactions between loss() and effort(), such as not-teaching-
at-all in Example 4, or non-brute-force-teaching in Example 5. An interesting variant studied in
cognitive science is when the learner expects to be taught [20, 8]. We defer the discussion on this
variant, known as “collusion” in computational teaching theory, and its connection to information
theory to section 5. In addition, our optimal teaching framework may shed light on the optimality
of different method of teaching humans [9, 13, 17, 18]. The third thread is the research on better
ways to training machine learners such as curriculum learning or easy-to-hard ordering of train-
ing items [3, 15, 16], and optimal reward design in reinforcement learning [21]. Interactive systems
have been built which employ or study teaching heuristics [4, 6]. Our framework provides a unifying
optimization view that balances the future loss of the learner and the effort of the teacher.

2 Optimal Teaching for General Learners

We start with a general framework for teaching and gradually specialize the framework in later
sections. Our framework consists of three entities: the world, the learner, and the teacher. (i) The
world is defined by a target model θ∗. Future test items for the learner will be drawn iid from this
model. This is the same as in standard machine learning. (ii) The learner has to learn θ∗ from
training data. Without loss of generality let θ∗ ∈ Θ, the hypothesis space of the learner (if not, we
can always admit approximation error and define θ∗ to be the distribution in Θ closest to the world
distribution). The learner is the same as in standard machine learning (learners who anticipate to
be taught are discussed in section 5). The training data, however, is provided by a teacher. (iii)
The teacher is the new entity in our framework. It is almost omnipotent: it knows the world θ∗,
the learner’s hypothesis space Θ, and importantly how the learner learns given any training data.1
However, it can only teach the learner by providing teaching (or, from the learner’s perspective,
training) examples. The teacher’s goal is to design a teaching set D so that the learner learns θ∗ as
accurately and effortlessly as possible. In this paper, we consider batch teaching where the teacher
presents D to the learner all at once, and the teacher can use any item in the example domain.

Being completely general, we leave many details unspecified. For instance, the world’s model can
be supervised p(x, y; θ∗) or unsupervised p(x; θ∗); the learner may or may not be probabilistic; and
when it is, Θ can be parametric or nonparametric. Nonetheless, we can already propose a generic
optimization problem for optimal teaching:

min
D

loss(f̂D, θ
∗) + effort(D). (1)

The function loss() measures the learner’s deviation from the desired θ∗. The quantity f̂D represents
the state of the learner after seeing the teaching set D. The function effort() measures the difficulty
the teacher experiences when teaching with D. Despite its appearance, the optimal teaching prob-
lem (1) is completely different from regularized parameter estimation in machine learning. The
desired parameter θ∗ is known to the teacher. The optimization is instead over the teaching set D.
This can be a difficult combinatorial problem – for instance we need to optimize over the cardinality
of D. Neither is the effort function a regularizer. The optimal teaching problem (1) so far is rather
abstract. For the sake of concreteness we next focus on a rich family of learners, namely Bayesian
models. However, we note that our framework can be adapted to other types of learners, as long as
we know how they react to the teaching set D.

1This is a strong assumption. It can be relaxed in future work, where the teacher has to estimate the state of
the learner by “probing” it with tests.
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3 Optimal Teaching for Bayesian Learners

We focus on Bayesian learners because they are widely used in both machine learning and cognitive
science [7, 23, 24] and because of their predictability: they react to any teaching examples in D by
performing Bayesian updates.2 Before teaching, a Bayesian learner’s state is captured by its prior
distribution p0(θ). Given D, the learner’s likelihood function is p(D | θ). Both the prior and the
likelihood are assumed to be known to the teacher. The learner’s state after seeing D is the posterior
distribution f̂D ≡ p(θ | D) =

(∫
Θ
p0(π)p(D | π)dπ

)−1
p0(θ)p(D | θ).

3.1 The KL Loss and Various Effort Functions, with Examples

The choice of loss() and effort() is problem-specific and depends on the teaching goal. In this paper,
we will use the Kullback-Leibler divergence so that loss(f̂D, θ

∗) = KL (δθ∗‖p(θ | D)), where δθ∗
is a point mass distribution at θ∗.3 This loss encourages the learner’s posterior to concentrate around
the world model θ∗. With the KL loss, it is easy to verify that the optimal teaching problem (1) can
be equivalently written as

min
D
− log p(θ∗ | D) + effort(D). (2)

We remind the reader that this is not a MAP estimate problem. Instead, the intuition is to find a good
teaching set D to make θ∗ “stand out” in the posterior distribution.

The effort() function reflects resource constraints on the teacher and the learner: how hard is it to
create the teaching examples, to deliver them to the learner, and to have the learner absorb them? For
most of the paper we use the cardinality of the teaching set effort(D) = c|D| where c is a positive
per-item cost. This assumes that the teaching effort is proportional to the number of teaching items,
which is reasonable in many problems. We will demonstrate a few other effort functions in the
examples below.

How good is any teaching set D? We hope D guides the learner’s posterior toward the world’s θ∗,
but we also hope D takes little effort to teach. The proper quality measure is the objective value (2)
which balances the loss() and effort() terms.

Definition 1 (Teaching Impedance). The Teaching Impedance (TI) of a teaching set D is the objec-
tive value − log p(θ∗ | D) + effort(D). The lower the TI, the better.

We now give examples to illustrate our optimal teaching framework for Bayesian learners.

Example 1 (Teaching a 1D threshold classifier). The classification task is the same as in Figure 1,
with x ∈ [0, 1] and y ∈ {−1, 1}. The parameter space is Θ = [0, 1]. The world has a threshold
θ∗ ∈ Θ. Let the learner’s prior be uniform p0(θ) = 1. The learner’s likelihood function is p(y =
1 | x, θ) = 1 if x ≥ θ and 0 otherwise.

The teacher wants the learner to arrive at a posterior p(θ | D) peaked at θ∗ by designing a small
D. As discussed above, this can be formulated as (2) with the KL loss() and the cardinality effort()
functions: minD − log p(θ∗ | D) + c|D|. For any teaching set D = {(x1, y1), . . . , (xn, yn)},
the learner’s posterior is simply p(θ | D) = uniform [maxi:yi=−1(xi),mini:yi=1(xi)], namely
uniform over the version space consistent with D. The optimal teaching problem becomes
minn,x1,y1,...,xn,yn − log

(
1

mini:yi=1(xi)−maxi:yi=−1(xi)

)
+ cn. One solution is the limiting case

with a teaching set of size two D = {(θ∗ − ε/2,−1), (θ∗ + ε/2, 1)} as ε → 0, since the Teaching
Impedance TI = log(ε) +2c approaches−∞. In other words, the teacher teaches by two examples
arbitrarily close to, but on the opposite sides of, the decision boundary as in Figure 1(right).

Example 2 (Learner cannot tell small differences apart). Same as Example 1, but the learner has
poor perception (e.g., children or robots) and cannot distinguish similar items very well. We may

2Bayesian learners typically assume that the training data is iid; optimal teaching intentionally violates this
assumption because the designed teaching examples in D will typically be non-iid. However, the learners are
oblivious to this fact and will perform Bayesian update as usual.

3If we allow the teacher to be uncertain about the world θ∗, we may encode the teacher’s own belief as a
distribution p∗(θ) and replace δθ∗ with p∗(θ).
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encode this in effort() as, for example, effort(D) = c
minxi,xj∈D |xi−xj |

. That is, the teaching ex-
amples require more effort to learn if any two items are too close. With two teaching examples
as in Example 1, TI = log(ε) + c/ε. It attains minimum at ε = c. The optimal teaching set is
D = {(θ∗ − c/2,−1), (θ∗ + c/2, 1)}.
Example 3 (Teaching to pick one model out of two). There are two Gaussian distributions θA =
N(− 1

4 ,
1
2 ), θB = N( 1

4 ,
1
2 ). The learner has Θ = {θA, θB}, and we want to teach it the fact

that the world is using θ∗ = θA. Let the learner have equal prior p0(θA) = p0(θB) = 1
2 . The

learner observes examples x ∈ R, and its likelihood function is p(x | θ) = N(x | θ). Let D =
{x1, . . . , xn}. With these specific parameters, the KL loss can be shown to be − log p(θ∗ | D) =
log (1 +

∏n
i=1 exp(xi)).

For this example, let us suppose that teaching with extreme item values is undesirable (note
xi → −∞ minimizes the KL loss). We combine cardinality and range preferences in effort(D) =
cn +

∑n
i=1 I(|xi| ≤ d), where the indicator function I(z) = 0 if z is true, and +∞ otherwise.

In other words, the teaching items must be in some interval [−d, d]. This leads to the optimal
teaching problem minn,x1,...,xn log (1 +

∏n
i=1 exp(xi)) + cn +

∑n
i=1 I(|xi| ≤ d). This is a

mixed integer program (even harder–the number of variables has to be optimized as well). We
first relax n to real values. By inspection, the solution is to let all xi = −d and let n minimize
TI = log (1 + exp(−dn)) + cn. The minimum is achieved at n = 1

d log
(
d
c − 1

)
. We then round n

and force nonnegativity: n = max
(
0,
[

1
d log

(
d
c − 1

)])
. This D is sensible: θ∗ = θA is the model

on the left, and showing the learner n copies of−d lends the most support to that model. Note, how-
ever, that n = 0 for certain combinations of c, d (e.g., when c ≥ d): the effort of teaching outweighs
the benefit. The teacher may choose to not teach at all and maintain the status quo (prior p0) of the
learner!

3.2 Teaching Dimension is a Special Case

In this section we provide a comparison to one of the most influential teaching models, namely the
original teaching dimension theory [10]. It may seem that our optimal teaching setting (2) is more
restrictive than theirs, since we make strong assumptions about the learner (that it is Bayesian, and
the form of the prior and likelihood). Their query learning setting in fact makes equally strong
assumptions, in that the learner updates its version space to be consistent with all teaching items.
Indeed, we can cast their setting as a Bayesian learning problem, showing that their problem is a
special case of (2). Corresponding to the concept class C = {c} in [10], we define the conditional

probability P (y = 1 | x, θc) =

{
1, if c(x) = +
0, if c(x) = − and the joint distribution P (x, y | θc) =

P (x)P (y | x, θc) where P (x) is uniform over the domainX . The world has θ∗ = θc∗ corresponding
to the target concept c∗ ∈ C. The learner has Θ = {θc | c ∈ C}. The learner’s prior is p0(θ) =
uniform(Θ) = 1

|C| , and its likelihood function is P (x, y | θc). The learner’s posterior after teaching
with D is

P (θc | D) =

{
1/(number of concepts in C consistent with D), if c is consistent with D

0, otherwise (3)

Teaching dimension TD(c∗) is the minimum cardinality of D that uniquely identifies the target
concept. We can formulate this using our optimal teaching framework

min
D
− logP (θc∗ | D) + γ|D|, (4)

where we used the cardinality effort() function (and renamed the cost γ for clarity). We can make
sure that the loss term is minimized to 0, corresponding to successfully identifying the target concept,
if γ < 1

TD(c∗) . But since TD(c∗) is unknown beforehand, we can set γ ≤ 1
|C| since |C| ≥ TD(c∗)

(one can at least eliminate one concept from the version space with each well-designed teaching
item). The solution D to (4) is then a minimum teaching set for the target concept c∗, and |D| =
TD(c∗).

4 Optimal Teaching for Bayesian Learners in the Exponential Family

While we have proposed an optimization-based framework for teaching any Bayesian learner and
provided three examples, it is not clear if there is a unified approach to solve the optimization
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problem (2). In this section, we further restrict ourselves to a subset of Bayesian learners whose
prior and likelihood are in the exponential family and are conjugate. For this subset of Bayesian
learners, finding the optimal teaching set D naturally decomposes into two steps: In the first step
one solves a convex optimization problem to find the optimal aggregate sufficient statistics forD. In
the second step one “unpacks” the aggregate sufficient statistics into actual teaching examples. We
present an approximate algorithm for doing so.

We recall that an exponential family distribution (see e.g. [5]) takes the form p(x | θ) =
h(x) exp

(
θ>T (x)−A(θ)

)
where T (x) ∈ RD is the D-dimensional sufficient statistics of x,

θ ∈ RD is the natural parameter, A(θ) is the log partition function, and h(x) modifies the base
measure. For a set D = {x1, . . . , xn}, the likelihood function under the exponential family takes a
similar form p(D | θ) = (

∏n
i=1 h(xi)) exp

(
θ>s− nA(θ)

)
, where we define

s ≡
n∑
i=1

T (xi) (5)

to be the aggregate sufficient statistics over D. The corresponding conjugate prior is the ex-
ponential family distribution with natural parameters (λ1, λ2) ∈ RD × R: p(θ | λ1, λ2) =
h0(θ) exp

(
λ>1 θ − λ2A(θ)−A0(λ1, λ2)

)
. The posterior distribution is p(θ | D, λ1, λ2) =

h0(θ) exp
(
(λ1 + s)>θ − (λ2 + n)A(θ)−A0(λ1 + s, λ2 + n)

)
. The posterior has the same form

as the prior but with natural parameters (λ1 + s, λ2 + n). Note that the data D enters the posterior
only via the aggregate sufficient statistics s and cardinality n. If we further assume that effort(D)
can be expressed in n and s, then we can write our optimal teaching problem (2) as

min
n,s

−θ∗>(λ1 + s) +A(θ∗)(λ2 + n) +A0(λ1 + s, λ2 + n) + effort(n, s), (6)

where n ∈ Z≥0 and s ∈ {t ∈ RD | ∃{xi}i∈I such that t =
∑
i∈I T (xi)}. We relax the problem

to n ∈ R and s ∈ RD, resulting in a lower bound of the original objective.4 Since the log partition
function A0() is convex in its parameters, we have a convex optimization problem (6) at hand if we
design effort(n, s) to be convex, too. Therefore, the main advantage of using the exponential family
distribution and conjugacy is this convex formulation, which we use to efficiently optimize over n
and s. This forms the first step in finding D.

However, we cannot directly teach with the aggregate sufficient statistics. We first turn n back into
an integer by max(0, [n]) where [] denotes rounding.5 We then need to find n teaching examples
whose aggregate sufficient statistics is s. The difficulty of this second “unpacking” step depends
on the form of the sufficient statistics T (x). For some exponential family distributions unpacking
is trivial. For example, the exponential distribution has T (x) = x. Given n and s we can easily
unpack the teaching set D = {x1, . . . , xn} by x1 = . . . = xn = s/n. The Poisson distribution
has T (x) = x as well, but the items x need to be integers. This is still relatively easy to achieve
by rounding x1, . . . , xn and making adjustments to make sure they still sum to s. The univariate
Gaussian distribution has T (x) = (x, x2) and unpacking is harder: given n = 3, s = (3, 5) it
may not be immediately obvious that we can unpack into {x1 = 0, x2 = 1, x3 = 2} or even
{x1 = 1

2 , x2 = 5+
√

13
4 , x3 = 5−

√
13

4 }. Clearly, unpacking is not unique.

In this paper, we use an approximate unpacking algorithm. We initialize the n teaching examples
by xi

iid∼ p(x | θ∗), i = 1 . . . n. 6 We then improve the examples by solving an unconstrained
optimization problem to match the examples’ aggregate sufficient statistics to the given s:

min
x1,...,xn

‖s−
n∑
i=1

T (xi)‖2. (7)

4For higher solution quality we may impose certain convex constraints on s based on the structure of T (x).
For example, univariate Gaussian has T (x) = (x, x2). Let s = (s1, s2). It is easy to show that s must satisfy
the constraint s2 ≥ s21/n.

5Better results can be obtained by comparing the objective of (6) under several integers around n and picking
the smallest one.

6As we will see later, such iid samples from the target distribution are not great teaching examples for two
main reasons: (i) We really should compensate for the learner’s prior by aiming not at the target distribution
but overshooting a bit in the opposite direction of the prior. (ii) Randomness in the samples also prevents them
from achieving the aggregate sufficient statistics.
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This problem is non-convex in general but can be solved up to a local minimum. The gradient is
∂
∂xj

= −2 (s−
∑
i T (xi))

>
T ′(xj). Additional post-processing such as enforcing x to be integers

is then carried out if necessary. The complete algorithm is summarized in Algorithm 1.

Algorithm 1 Approximately optimal teaching for Bayesian learners in the exponential family
input target θ∗; learner information T (), A(), A0(), λ1, λ2; effort()

Step 1: Solve for aggregate sufficient statistics n, s by convex optimization (6)
Step 2: Unpacking: n← max(0, [n]); find x1, . . . , xn by (7)

output D = {x1, . . . , xn}

We illustrate Algorithm 1 with several examples.
Example 4 (Teaching the mean of a univariate Gaussian). The world consists of a Gaussian
N(x;µ∗, σ2) where σ2 is fixed and known to the learner while µ∗ is to be taught. In expo-
nential family form p(x | θ) = h(x) exp (θT (x)−A(θ)) with T (x) = x alone (since σ2

is fixed), θ = µ
σ2 , A(θ) = µ2

2σ2 = θ2σ2

2 , and h(x) =
(√

2πσ
)−1

exp
(
− x2

2σ2

)
. Its con-

jugate prior (which is the learner’s initial state) is Gaussian with the form p(θ | λ1, λ2) =

h0(θ) exp
(
λ1θ − λ2

θ2σ2

2 −A0(λ)
)

where A0(λ1, λ2) =
λ2
1

2σ2λ2
− 1

2 log(σ2λ2).

To find a good teaching setD, in step 1 we first find its optimal cardinality n and aggregate sufficient
statistics s =

∑
i∈D xi using (6). The optimization problem becomes

min
n,s

−θ∗s+
σ2θ∗2

2
n+

(λ1 + s)2

2σ2(λ2 + n)
− 1

2
log(σ2(λ2 + n)) + effort(n, s) (8)

where θ∗ = µ∗/σ2. The result is more intuitive if we rewrite the conjugate prior in its standard form
µ ∼ N(µ | µ0, σ

2
0) with the relation λ1 = µ0σ

2

σ2
0

, λ2 = σ2

σ2
0

. With this notation, the optimal aggregate
sufficient statistics is

s =
σ2

σ2
0

(µ∗ − µ0) + µ∗n. (9)

Note an interesting fact here: the average of teaching examples s
n is not the target µ∗, but should

compensate for the learner’s initial belief µ0. This is the “overshoot” discussed earlier. Putting (9)
back in (8) the optimization over n is minn − 1

2 log σ2
(
σ2

σ2
0

+ n
)

+ effort(n). Consider any differ-

entiable effort function (w.r.t. the relaxed n) with derivative effort′(n), the optimal n is the solution
to n− 1

2 effort′(n) + σ2

σ2
0

= 0. For example, with the cardinality effort(n) = cn we have n = 1
2c −

σ2

σ2
0

.

In step 2 we unpack n and s into D. We discretize n by max(0, [n]). Another interesting fact is that
the optimal teaching strategy may be to not teach at all (n = 0). This is the case when the learner
has literally a narrow mind to start with: σ2

0 < 2cσ2 (recall σ2
0 is the learner’s prior variance on the

mean). Intuitively, the learner is too stubborn to change its prior belief by much, and such minuscule
change does not justify the teaching effort.

Having picked n, unpacking s is trivial since T (x) = x. For example, we can let D be x1 = . . . =
xn = s/n as discussed earlier, without employing optimization (7). Yet another interesting fact is
that such an alarming teaching set (with n identical examples) is likely to contradict the world’s
model variance σ2, but the discrepancy does not affect teaching because the learner fixes σ2.
Example 5 (Teaching a multinomial distribution). The world is a multinomial distribution π∗ =
(π∗1 , . . . , π

∗
K) of dimension K. The learner starts with a conjugate Dirichlet prior p(π | β) =

Γ(
∑
βk)∏

Γ(βk)

∏K
k=1 π

βk−1
k . Each teaching item is x ∈ {1, . . . ,K}. The teacher needs to decide the total

number of teaching items n and the split s = (s1, . . . , sK) where n =
∑K
k=1 sk.

In step 1, the sufficient statistics is s1, . . . , sK−1 but for clarity we write (6) using s and standard
parameters:

min
s
− log Γ

(
K∑
k=1

(βk + sk)

)
+

K∑
k=1

log Γ(βk + sk)−
K∑
k=1

(βk + sk− 1) log π∗k + effort(s). (10)
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This is an integer program; we relax s ∈ RK≥0, making it a continuous optimization problem with
nonnegativity constraints. Assuming a differentiable effort(), the optimal aggregate sufficient statis-

tics can be readily solved with the gradient ∂
∂sk

= −ψ
(∑K

k=1(βk + sk)
)

+ψ(βk + sk)− log π∗k +

∂effort(s)
∂sk

, where ψ() is the digamma function. In step 2, unpacking is again trivial: we simply let
sk ← [sk] for k = 1 . . .K.

Let us look at a concrete problem. Let the teaching target be π∗ = ( 1
10 ,

3
10 ,

6
10 ). Let the

learner’s prior Dirichlet parameters be quite different: β = (6, 3, 1). If we say that teach-
ing requires no effort by setting effort(s) = 0, then the optimal teaching set D found by Algo-
rithm 1 is s = (317, 965, 1933) as implemented with Matlab fmincon. The MLE from D is
(0.099, 0.300, 0.601) and is very close to π∗. In fact, in our experiments, fmincon stopped be-
cause it exceeded the default function evaluation limit. Otherwise, the counts would grow even
higher with MLE→ π∗. This is “brute-force teaching”: using unlimited data to overwhelm the
prior in the learner.

But if we say teaching is costly by setting effort(s) = 0.3
∑K
k=1 sk, the optimal D found by Al-

gorithm 1 is instead s = (0, 2, 8) with merely ten items. Note that it did not pick (1, 3, 6) which
also has ten items and whose MLE is π∗: this is again to compensate for the biased prior Dir(β)
in the learner. Our optimal teaching set (0, 2, 8) has Teaching Impedance TI = 2.65. In contrast,
the set (1, 3, 6) has TI = 4.51 and the previous set (317, 965, 1933) has TI = 956.25 due to its
size. We can also attempt to sample teaching sets of size ten from multinomial(10, π∗). In 100,000
simulations with such random teaching sets the average TI = 4.97 ± 1.88 (standard deviation),
minimum TI = 2.65, and maximum TI = 18.7. In summary, our optimal teaching set (0, 2, 8) is
very good.

We remark that one can teach complex models using simple ones as building blocks. For instance,
with the machinery in Example 5 one can teach the learner a full generative model for a Naı̈ve Bayes
classifier. Let the target Naı̈ve Bayes classifier haveK classes with class probability p(y = k) = π∗k.
Let v be the vocabulary size. Let the target class conditional probability be p(x = i | y = k) =
θ∗ki for word type i = 1 . . . v and label k = 1 . . .K. Then the aggregate sufficient statistics are
n1 . . . nK , m11 . . .m1v , . . . , mK1 . . .mKv where nk is the number of documents with label k, and
mki is the number of times word i appear in all documents with label k. The optimal choice of
these n’s and m’s for teaching can be solved separately as in Example 5 as long as effort() can be
separated. The unpacking step is easy: we know we need nk teaching documents with label k. These
nk documents together need mki counts of word type i. They can evenly split those counts. In the
end, each teaching document with label k will have the bag-of-words

(
mk1
nk

, . . . , mkvnk

)
, subject to

rounding.
Example 6 (Teaching a multivariate Gaussian). Now we consider the general case of
teaching both the mean and the covariance of a multivariate Gaussian. The world
has the target µ∗ ∈ RD and Σ∗ ∈ RD×D. The likelihood is N(x | µ,Σ).
The learner starts with a Normal-Inverse-Wishart (NIW) conjugate prior p(µ,Σ |

µ0, κ0, ν0,Λ
−1
0 ) =

(
2
ν0D
2 π

D(D−1)
4

(∏D
i=1 Γ

(
ν0+1−i

2

))
|Λ0|−

ν0
2

(
2π
κ0

)D
2

)−1

|Σ|−
ν0+D+2

2

exp
(
− 1

2 tr(Σ−1Λ0) − κ0

2 (µ− µ0)>Σ−1(µ− µ0)
)
. Given data x1, . . . , xn ∈ RD, the

aggregate sufficient statistics are s =
∑n
i=1 xi,S =

∑n
i=1 xix

>
i . The posterior is NIW

p(µ,Σ | µn, κn, νn,Λ−1
n ) with parameters µn = κ0

κ0+nµ0 + 1
κ0+ns, κn = κ0 + n, νn = ν0 + n,

Λn = Λ0 + S + κ0n
κ0+nµ0µ

>
0 − 2κ0

κ0+nµ0s
> − 1

κ0+nss
>. We formulate the optimal aggregate

sufficient statistics problem by putting the posterior into (6). Note S by definition needs to be
positive semi-definite. In addition, with Cauchy-Schwarz inequality one can show that Sii ≥ s2

i /2
for i = 1 . . . n. Step 1 is thus the following SDP:

min
n,s,S

D log 2

2
νn +

D∑
i=1

log Γ

(
νn + 1− i

2

)
− νn

2
log |Λn| −

D

2
log κn +

νn
2

log |Σ∗|

+
1

2
tr(Σ∗−1Λn) +

κn
2

(µ∗ − µn)>Σ∗−1(µ∗ − µn) + effort(n, s,S) (11)

s.t. S � 0; Sii ≥ s2
i /2, ∀i. (12)
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In step 2, we unpack s,S by initializing x1, . . . , xn
iid∼ N(µ∗,Σ∗). Again, such iid samples are

typically not good teaching examples. We improve them with the optimization (7) where T (x) is the
(D + D2)-dim vector formed by the elements of x and xx>, and similarly the aggregate sufficient
statistics vector s is formed by the elements of s and S.

We illustrate the results on a concrete problem in D = 3. The target Gaussian is µ∗ = (0, 0, 0) and
Σ∗ = I . The target mean is visualized in each plot of Figure 2 as a black dot. The learner’s initial
state is captured by the NIW with parameters µ0 = (1, 1, 1), κ0 = 1, ν0 = 2 + 10−5,Λ0 = 10−5I .
Note the learner’s prior mean µ0 is different than µ∗, and is shown by the red dot in Figure 2. The
red dot has a stem extending to the z-axis=0 plane for better visualization. We used an “expensive”
effort function effort(n, s,S) = n. Algorithm 1 decides to use n = 4 teaching examples with s =

(−1,−1,−1) and S =

(
4.63 −1 −1
−1 4.63 −1
−1 −1 4.63

)
. These unpack intoD = {x1 . . . x4}, visualized by the

four empty blue circles. The three panels of Figure 2 show unpacking results starting from different
initial seeds sampled fromN(µ∗,Σ∗). These teaching examples form a tetrahedron (edges added for
clarity). This is sensible: in fact, one can show that the minimum teaching set for a D-dimensional
Gaussian is the D + 1 points at the vertices of a D-dimensional tetrahedron. Importantly the mean
of D, (−1/4,−1/4,−1/4) shown as the solid blue dot with a stem, is offset from the target µ∗ and
to the opposite side of the learner’s prior µ0. This again shows thatD compensates for the learner’s
prior. Our optimal teaching set D has TI = 1.69. In contrast, teaching sets with four iid random
samples from the target N(µ∗,Σ∗) have worse TI. In 100,000 simulations such random teaching
sets have average TI = 9.06± 3.34, minimum TI = 1.99, and maximum TI = 35.51.

−1 0 1 −2
0

2

−1

−0.5

0

0.5

1

−1 0 1 −2
0

2

−1

0

1

−1 0 1 −2
0

2
−2

−1.5

−1

−0.5

0

0.5

1

Figure 2: Teaching a multivariate Gaussian

5 Discussions and Conclusion

What if the learner anticipates teaching? Then the teaching set may be further reduced. For ex-
ample, the task in Figure 1 may only require a single teaching example D = {x1 = θ∗}, and the
learner can figure out that this x1 encodes the decision boundary. Smart learning behaviors simi-
lar to this have been observed in humans by Shafto and Goodman [20]. In fact, this is known as
“collusion” in computational teaching theory (see e.g. [10]), and has strong connections to compres-
sion in information theory. In one extreme of collusion, the teacher and the learner agree upon an
information-theoretical coding scheme beforehand. Then, the teaching set D is not used in a tradi-
tional machine learning training set sense, but rather as source coding. For example, x1 itself would
be a floating-point encoding of θ∗ up to machine precision. In contrast, the present paper assumes
that the learner does not collude.

We introduced an optimal teaching framework that balances teaching loss and effort. we hope this
paper provides a “stepping stone” for follow-up work, such as 0-1 loss() for classification, non-
Bayesian learners, uncertainty in learner’s state, and teaching materials beyond training items.
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