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Abstract

Latent Dirichlet allocation (LDA) is an in-
creasingly popular tool for data analysis in
many domains. If LDA output affects de-
cision making (especially when money is in-
volved), there is an incentive for attackers to
compromise it. We ask the question: how can
an attacker minimally poison the corpus so
that LDA produces topics that the attacker
wants the LDA user to see? Answering this
question is important to characterize such at-
tacks, and to develop defenses in the future.
We give a novel bilevel optimization formu-
lation to identify the optimal poisoning at-
tack. We present an efficient solution (up to
local optima) using descent method and im-
plicit functions. We demonstrate poisoning
attacks on LDA with extensive experiments,
and discuss possible defenses.

1 Introduction

The last few years have witnessed the wide adop-
tion of latent topic modeling, exemplified by latent
Dirichlet allocation (LDA), in science and art such
as political analysis (Grimmer 2010), business intel-
ligence (Mahajan, Dey & Haque 2008), music (Cai,
Zhang, Wang, Zhang & Ma 2007) and even archaeol-
ogy (Pratt, MacLean, Knutson & Ringger 2011). LDA
is rapidly becoming the modus operandi for data min-
ing practitioners to explore large data sets. Impor-
tantly, the recovered topics are increasingly driving
data interpretation and decision making.

Whenever a machine learner drives decision mak-
ing, one needs to consider its security vulnerabilities.
Specifically, what if an attacker has the ability to mali-
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ciously poison the corpus with the goal to manipulate
the topics produced by standard LDA? A user who
runs standard LDA on the poisoned corpus will then
see the manipulated topics, which may affect her de-
cisions. There may be financial or political incentives
for the attacker to mount such an attack.

Such security concerns are not unfounded. A sim-
ilar attack on spam filters, where an attacker may
feed specially designed emails to a spam filter in or-
der to alter the filter’s classification behavior, has
been well-known, see e.g. (Nelson, Barreno, Chi,
Joseph, Rubinstein, Saini, Sutton, Tygar & Xia 2009).
Other examples of research on the security of ma-
chine learning include generic ways that a learn-
ing system might be compromised (Barreno, Nelson,
Joseph & Tygar 2010), ad hoc attacking procedures
against SVMs (Biggio, Nelson & Laskov 2012), net-
work worm detectors (Newsome, Karp & Song 2006),
HTTP requests (Chung & Mok 2007), malware detec-
tors (Biggio, Corona, Maiorca, Nelson, Šrndić, Laskov,
Giacinto & Roli 2013) and so on.

Although the security of some machine learners has
been studied before, to the best of our knowledge the
security risks to latent topic modeling, in particular
LDA, remain unexplored. To what extent can such
attacks be optimized to inflict the maximum damage?
What are some ways to defend against such attacks?
In this paper, we answer the first question by propos-
ing a unified computational framework for attacking
LDA under budget constraints. We formulate it as
a bilevel optimization problem (Colson, Marcotte &
Savard 2007). We develop an efficient descent method
based on implicit functions for solving the bilevel op-
timization problem. Our method can be generalized
easily to attacking other machine learning models that
employ variational inference. Note that our ultimate
goal is not to be the attacker but to understand the
power and limits of such attacks, which is logically
the first step towards designing defenses against such
attacks in the future.
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2 The KKT Conditions for LDA
Variational Inference

We first review the notation. Recall LDA is a gen-
erative model consisting of K topics. The k-th topic
is a multinomial distribution ϕk over some vocabu-
lary, and is drawn from a Dirichlet prior ϕk ∼ Dir(β).
Each document d has a topic proportion multinomial
θd, which is drawn from another Dirichlet distribu-
tion θd ∼ Dir(α). For the i-th word in document
d, we draw a topic assignment zdi from the multi-
nomial parametrized by θd: p(zdi = k | θd) = θdk,
and then draw the word wdi from the selected topic
ϕzdi : p(wdi | zdi, ϕ) = ϕzdi,wdi

. During inference,
words W = {wdi} and hyperparameters α, β are ob-
served, while topic assignments Z = {zdi}, topic pro-
portions θ = {θdk}, and topics ϕ = {ϕk} are hidden.
The posterior of interest is p(ϕ,θ,Z |W, α, β). How-
ever, calculating this posterior p(ϕ,θ,Z |W, α, β) ex-
actly is intractable. Two common approximations are
Markov chain Monte Carlo (MCMC) methods such as
collapsed Gibbs sampling (Griffiths & Steyvers 2004),
and variational methods (Blei, Ng & Jordan 2003).
Our analysis is aimed at LDA with variational infer-
ence, although empirically our attacks are also effective
on LDA with MCMC as discussed in Section 5.

LDA variational approximation typically employs a
fully factorized variational distribution q(ϕ,θ,Z) =∏
k q(ϕk | ηk)

∏
d (q(θd | γd)

∏
i q(zdi | φdi)), where

q(ϕk | ηk), q(θd | γd) and q(zdi | φdi) are Dirichlet,
Dirichlet and Multinomial distributions parametrized
by variational parameters ηk, γd and φdi, respectively.
Let µ = {η,γ,φ} be all variational parameters and
denote the space of µ as Θ. The objective is to min-
imize the Kullback-Leibler (KL) divergence between
the variational distribution and the true posterior dis-
tribution w.r.t. the variational parameters:

µ̂(W) ∈ argminµ∈Θ KL(q(ϕ,θ,Z | µ)‖
p(ϕ,θ,Z |W, α, β)). (1)

Variational inference on LDA is to solve the Karush-
Kuhn-Tucker (KKT) conditions for Eq (1) to find a
local optimum. The KKT conditions will be impor-
tant to describe LDA attacks later. We state the main
conditions here, and its complete derivation is in Ap-
pendix A in the supplementary material. To simplify
notation, we note that φdi is the same for all word
positions wdi sharing the same word v. We denote
this shared value of φdi as φdv. Correspondingly, the
number of times word v appears in document d is de-
noted as mdv ∈ Z≥0. These elements mdv form a size
D×V document-word matrix M, which is another rep-
resentation of the input corpus. The KKT conditions
consist of K × V equations in (2), D × K equations

in (3), and D × V ×K equations in (4):

ηkv − β −
∑
d

φdvkmdv = 0 (2)

γdk − α−
∑
v

φdvkmdv = 0 (3)

φdvk −
exp(Ψ(γdk) + (Ψ(ηkv)−Ψ(

∑
v′ ηkv)))∑

k exp(Ψ(γdk) + (Ψ(ηkv)−Ψ(
∑
v′ ηkv′)))

= 0. (4)

By solving the above KKT conditions for a given M,
one obtains a locally optimal set of variational param-
eters µ̂(M) = {η̂(M), γ̂(M), φ̂(M)}. Note that µ̂(M)
cannot be written in closed-form of M. However, as
we will see in Section 3, µ̂(M) is an implicit function
of M and the KKT conditions are the corresponding
implicit equations.

3 Optimal Attacks on LDA

In practice, LDA is usually used to learn the topics as
a concise summary of a corpus. For example, in varia-
tional inference given an input corpus M the topics are
defined by the optimal variational parameters µ̂(M)
from Eq (1). As standard in variational inference, we
use the expectation of ϕ in the variational distribu-
tion q(ϕ | η̂(M)) as the learned topics, denoted as
ϕ̂(M) ≡ ϕ̂(η̂(M)).

We now consider the security risk when an attacker
can poison the corpus, such that the topics learned by
LDA will be guided toward some target multinomial
distributions ϕ∗ defined by the attacker. Intuitively,
the closer the learned topics ϕ̂(M) are to the attacker-
defined target topics ϕ∗ the higher gain the attacker
will get. Specifically, one goal of the attacker is to
minimize an attacker risk function RA(ϕ̂(M),ϕ∗),
which characterizes the distance between ϕ̂(M) and
ϕ∗. Meanwhile, as a greatly altered corpus tends to
attract attention, another goal of the attacker is to
only make small changes to the corpus. From here on,
we will use M0 to denote the document-word matrix
of the original corpus, and M the poisoned corpus.
Intuitively, the attacker wants to limit the danger of
being detected by only considering M that is close to
M0. We formally define the set of allowable poisoned
corpus as a search space M. Concrete definitions of
RA() and M are task-dependent and we will give sev-
eral instances later.

A rational attacker should minimize RA() while re-
maining in M. We formulate the optimal LDA
attacking problem as a bilevel programming prob-
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lem: (Bard 1998, Colson et al. 2007)

min
M∈M,ϕ̂(M)

RA(ϕ̂(M),ϕ∗) (5)

s.t. ϕ̂(M) are LDA topics

learned from M. (6)

The optimization for M in Eq (5) is called the upper-
level task, which is the attacker’s optimization prob-
lem. Eq (6) is called the lower-level task, which
is nothing but the LDA learner’s optimization prob-
lem given the corpus M. Our framework is simi-
lar to machine teaching (Zhu 2013, Zhu 2015, Mei &
Zhu 2015, Patil, Zhu, Kopec & Love 2014) where the
teacher plays the role of the attacker in our framework.
Unfortunately, bilevel programming is in general diffi-
cult. Furthermore, it is well-known that the lower-level
optimization Eq (6) does not admit a closed-form so-
lution. In what follows, we focus on LDA variational
inference algorithm to derive an efficient approximate
solution to the bilevel programming problem.

Our framework and research on regularized topic
model, e.g. (Newman, Bonilla & Buntine 2011), are
quite different on the variables they optimize. Our
work optimize the training data (corpus) while reg-
ularized topic model optimizes the topics given fixed
training data. This difference leads to a difference in
the optimization framework. Our work is necessar-
ily a bilevel framework to combine attacker’s risk and
learner’s KL-divergence. In contrast, regularized topic
model is a single-level optimization problem combin-
ing KL-divergence and structured prior by modifying
the loss function.

3.1 Attacking LDA with Variational
Inference

In variational inference, each term ϕ̂(η̂(M))kv is de-
fined as

ϕ̂ (η̂ (M))kv , Eq(ϕ|η̂(M)) [ϕkv] =
η̂(M)kv

(
∑
v′ η̂(M)kv′)

. (7)

We need to make the upper-level problem continuous
to solve it by projected gradient descent method in
the following sections. Therefore, as a standard way
in machine learning, we relax each element mdv from
integer to non-negative real values to make the upper
bilevel problem continuous. We get our formulation
for attacking variational LDA:

min
M∈M,µ̂(M)

RA (ϕ̂(η̂(M)),ϕ∗) (8)

s.t. µ̂(M) ∈ argminµ∈Θ (9)

KL(q(ϕ,θ,Z | µ)‖p(ϕ,θ,Z |M, α, β)).

This intermediate bilevel optimization problem is still
hard to solve. We convert it to a single-level optimiza-

tion problem by the KKT conditions for the lower-level
LDA variational inference problem:

min
M∈M,µ̂(M)

RA (ϕ̂(η̂(M)),ϕ∗)

s.t. µ̂(M) satisfies Eqs (2)(3)(4). (10)

3.2 Descent Method

We use the descent method (Savard & Gauvin 1994)
to solve the relaxed problem Eq (10). The descent
method is an iterative gradient method. In iteration t,
we take a gradient step with stepsize λt in the opposite
direction of the gradient of the upper-level objective
with respect to M, then project the updated corpus
to the search space M:

M(t) = ProjM

[
M(t−1) − λt∇MRA (ϕ̂(η̂(M)),ϕ∗)∣∣∣

M=M(t−1)

]
. (11)

As explained later in Section 3.3, we actually perform
projected gradient descent to ensure nonnegativity of
M(t). However, the main difficulty is in computing
the gradient because ϕ̂(η̂(M)) is an implicit function
of M. We denote the number of entries in η, γ, φ, µ
and M as Nη,Nγ ,Nφ,Nµ and NM, respectively. We
calculate the gradient term in Eq (11) according to the
chain rule

∇MRA (ϕ̂(η̂(M)),ϕ∗) (12)

= ∇ϕRA (ϕ,ϕ∗)
∣∣∣
ϕ=ϕ̂(η̂(M))

∂ϕ̂(η)

∂η

∣∣∣
η=η̂(M)

∂η̂(M)

∂M

∇ϕRA(ϕ,ϕ∗)
∣∣∣
ϕ=ϕ̂(η̂(M))

is easy to compute if we as-

sume that RA(ϕ,ϕ∗) is differentiable with respect to
ϕ. It is a vector with length Nη. We give specific

forms in Section 3.3. The ∂ϕ̂(η)
∂η

∣∣∣
η=η̂(M)

term is also

easy to compute. It is a size Nη×Nη Jacobian matrix
and according to Eq (7), its element in the kv-th row
and the k′v′-th column is[
∂ϕ̂(η)

∂η

]
kv,k′v′

=
(
∑
w ηkw)I1(v′ = v)− ηkv′

(
∑
w ηkw)2

I1(k = k′),

(13)

where I1(z) = 1 if z is true, and 0 otherwise. The term
∂η̂(M)
∂M is a size Nη×NM Jacobian matrix. The element

at kv-th row and dv′-th column is
[
∂η̂(M)
∂M

]
kv,dv′

=

∂η̂kv(M)
∂Mdv′

. This Jacobian matrix is hard to compute

because η̂(M), as a component of µ̂(M), cannot be
represented in closed-form with respect to M. How-
ever, under the mild condition that the Jacobian ma-
trix

∂fµ
∂µ is invertible, µ̂(M) is an implicit function of
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M (Danilov 2001). Here, fµ denotes the left-hand-
side terms of the system of equations Eqs (2)(3)(4).

Moreover, ∂µ̂(M)
∂M can be get as follows by the implicit

function theorem:

∂µ̂(M)

∂M
= −(

∂fµ
∂µ

)−1(
∂fµ
∂M

), (14)

where
∂fµ
∂µ is the Nµ×Nµ Jacobian matrix,

∂fµ
∂M is the

Nµ ×NM Jacobian matrix. The technical detail is in
supplemental material Appendix B.

Although ∂η̂(M)
∂M (as a component of ∂µ̂(M)

∂M ) can be
computed by Eq (14), it requires inverting a large Jaco-

bian matrix
∂fµ
∂µ and could be impractical. We propose

to approximate the computation efficiently as follows:

[
∂η̂(M)

∂M

]
kv,dv′

≈ φdvkI1(v = v′) (15)

This approximation is discussed in supplemental ma-
terial Appendix C. Empirically, it works well in our
experiments.

Summary of the descent method. The gradient
of the upper-level objective w.r.t. M allows us to do
gradient descent on the relaxed attack objective in
Eq (10), where M was relaxed to a real-valued matrix.
In the end, we project M back to the space of nonnega-
tive integer matrices ZD×V≥0 . Let cv , round(

∑
dmdv)

be the rounded column sum in M. The projection
is defined as the nearest integer-value matrix with M
(measured in L1 distance) which maintains the column
sum as cv:

M̃ , argminM′∈ZD×V
≥0

,
∑

dm
′
dv=cv

∑
d

∑
v

|m′dv−mdv|.

(16)

The complete optimal LDA attack algorithm is sum-
marized in Algorithm 1.

3.3 Attack Solution for Specific RA()
Functions and M Sets

The key to Algorithm 1 is computing the gradient,
which depends on specific forms of the attacker risk
functions and search spaces. Note that there can be
many choices on the attacker risk functions and search
spaces. For example, if we use the topic proportions
of each document as features for downstream docu-
ment classification, then classification accuracy based
on the learned topics can be the attacker risk func-
tion. However, in this paper we restrict ourselves to
LDA alone without a downstream task. We discuss
two RA() functions and one M set below that are suit-
able for attacking LDA.

Algorithm 1 Descent Method for the Optimal Attack
on LDA

Require: M(0), ϕ∗, α, β, {λt}
t = 0
while Mt not converged do

Use standard LDA variational inference procedure
(e.g. the software in (Blei et al. 2003)) to com-
pute the variational parameters µ̂(M(t)) satisfy-
ing Eq (1).
Descent step: Update M(t+1) from M(t) by
Eq (11).
t = t+ 1

end while
Project M(t) to an integer-valued matrix M̃ by
Eq (16).
return M̃

The `2 attacker risk function is the
sum of squares of the difference of the
topics, that is RA,`2 (ϕ̂(η̂(M)),ϕ∗) =
1
2

∑
k

∑
v (ϕ̂(η̂(M))kv − ϕ∗kv)

2
. We get the gradient by

Eqs (12), (13) and (15): ∇mdv
RA,`2(ϕ̂(η̂(M)),ϕ∗) =∑

k (ϕ̂kv(η̂(M))− ϕ∗kv)
(
∑

v′ η̂kv′ (M))−η̂kv(M)

(
∑

v′ η̂kv′ (M))2 φ̂dvk. The

ε−insensitive `2 attacker risk function is defined as:

RA,ε−`2 (ϕ̂(η̂(M)),ϕ∗)

=
1

2

∑
k

∑
v

((|ϕ̂(η̂(M))kv − ϕ∗kv| − ε)+)
2
,(17)

where (x)+ = max{0, x}. The gradient is
∇mdv

RA,ε−`2 (ϕ̂(η̂(M)),ϕ∗) =∑
k

sign (ϕ̂kv(η̂(M))− ϕ∗kv) (|ϕ̂kv(η̂(M))− ϕ∗kv| − ε)+

(
∑
v′ η̂kv′(M))− η̂kv(M)

(
∑
v′ η̂kv′(M))

2 φ̂dvk. (18)

We define a M set in which the `1 distance between the
original matrix M0 and the manipulated M is within
a total change limit L, and the `1 distance of each
row is within a per-document change limit Ld (Nelson,
Rubinstein, Huang, Joseph, Lee, Rao & Tygar 2012).
In other words, the “small attacks” are:

M = {M ∈M ∈ RD×V≥0 : ‖M0 −M‖1 ≤ L
∧

∀d : ‖M0,d,· −Md,·‖1 ≤ Ld} (19)

4 Experiments

We perform a variety of attacks on LDA to demon-
strate the effectiveness of Algorithm 1. These at-
tacks are for illustration purpose only. We use three
disparate corpora which have been studied by the
topic modeling research community before: CONG
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Table 1: Corpus statistics, LDA parameters, and attack settings

corpus #documents #vocabulary avg doc length #topics α β
CONG 2740 6157 160 10 0.1 0.01
WISH 89533 23594 5 12 0.1 0.10

AP 2246 10473 134 15 0.1 0.01

attack goal ϕ∗ corpus to poison L |budget|
|corpus|

|attack|
|corpus| Ld

promote “marijuana” to top 10 in the legislation topic CONG 600 0.13% 0.08% 10
promote “debt” and “ceiling” to top 10 in the market topic AP 600 0.20% 0.17% 10
demote “iraq” from top 10 in the war topic CONG 300 0.06% 0.05% 10
replace “Paul” with “Weasley” in the president topic WISH 800 0.17% 0.16% 2
promote “marijuana” but with Part-of-Speech constraints CONG 600 0.13% 0.13% 10
move “president” from top 10 in the president topic to top
10 in the peace topic with sentence-level modification

CONG 500 sentences 0.55% 0.38% 1 sentence
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Figure 1: Promote-word attack on word “marijuana” in the legislation topic from CONG

consists of floor-debate transcripts from the United
States House of Representatives in 2005 (Thomas,
Pang & Lee 2006); WISH contains online new year’s
wishes (Goldberg, Fillmore, Andrzejewski, Xu, Gib-
son & Zhu 2009); AP is a subset of TREC AP
newswire articles collected around 1990 (http://
www.cs.princeton.edu/blei/lda-c/). We employ
a standard implementation of variational LDA (Blei
et al. 2003). Table 1 lists the corpus statistics and
LDA parameters. The attacks are informally described
in Table 1 and will be precisely defined later in the sec-
tion. We use the ε-insensitive RA,ε−`2() as in Eq (17).
ε is set to a very small value 0.005. We define M as in
Eq (19) with parameters L and Ld specified in Table 1.

4.1 Promote-Word Attacks

The first kind of attack aims to promote the topic-
probability ϕ∗k,w ≡ p(w | k) of attack word w in topic
k. This attack is motivated by the fact that often a
user interprets LDA output by examining the top few
words in each topic. Therefore, with sufficiently large
ϕ∗k,w the attack word w will be seen by the user as
if it is important in topic k. We present two exam-
ple promote-word attacks. The first attack promotes
the word “marijuana” into the top 10 words of the
legislation topic in the CONG corpus.1 The second
promotes two words “debt” and “ceiling” into the top
10 words of the market topic in the AP corpus. These
attack words describe “hot button issues” that emerge

1As customary in LDA, the topic names are manually
assigned to reflect the main words in that topic.

after the corpora (CONG was collected in 2005, AP in
1990). Therefore, no LDA topic on the original corpus
assigns high probability to those attack words. This
provides a valid setting to demonstrate our LDA at-
tacks.

For the first attack, we define the attack target ϕ∗

so that “marijuana” is the 10th word in the legis-
lation topic (denoted as the kth topic). Specifically,
given LDA topics ϕ obtained from the original CONG
corpus, we denote the word ranked 9th in topic k as
w9. We promote the attack word ϕ∗k,marijuana = ϕk,w9

while keeping all other words the same ϕ∗k,w = ϕk,w
for w 6=marijuana, then normalize ϕ∗k so it sums to
one. For other topics k′ 6= k, ϕ∗k′ are exactly the
same as ϕk′ . We note that LDA is known to have
a “topic switching” problem in that topic indices can
be permuted due to non-identifiability (Griffiths &
Steyvers 2004). To deal with this issue, we matched
each learned topic to the topic in ϕ∗ with the mini-
mum `1 distance.

Figure 1 shows that Algorithm 1 (Alg1) effectively at-
tacked LDA. Panels (a,b) show the word cloud of the
top 10 words in the legislation topic for one run. The
attack word “marijuana” (red) became the 10-th word
and forced “action” (green) out of top 10 (“action”
ranked 11-th after attack). The other words (blue)
remained in top 10 after attack.

Panel (c) shows that Alg1 rapidly optimized the at-
tack objective function RA,ε−`2(). The error bars in
all figures are ± standard error on 5 runs. Different

http://www.cs.princeton.edu/blei/lda-c/
http://www.cs.princeton.edu/blei/lda-c/
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(a) before attack (b) after attack
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Figure 2: Promote-word attack on words “debt” and “ceiling” in the market topic from AP
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Figure 3: Demote-word attack on word “Iraq” in the war topic from CONG

runs only differs by the random seeds of LDA. Since we
are not aware of prior work on attacking LDA, we im-
plemented a baseline attack (RndAtk) which adds the
attack word(s) to randomly selected documents in the
corpus subject to the same constraint encoded in the
M set. RndAtk modified a fixed amount of words in
each iteration, and the total amount of modification
matches the amount by Alg1. Panel (c) shows that
RndAtk only very slowly decreased the objective func-
tion RA, ε− `2(). Similarly, Panel (d) shows the rank
of the word “marijuana” in the target topic as attack
progresses. Alg1 promoted the attack word much more
rapidly than RndAtk. Note the y-axis has logrithmic
spacing.

Panel (e) sheds some light on why Alg1 is effective by
showing how much of the attack words contributed to
the target topic. Let ckv ,

∑
d φdvk be the variational

contribution of word v to topic k. Let cv be the total
count of word v in the corpus. Panel (e) shows these
quantities for “marijuana”. Alg1 is effective because
almost all the added attack words are assigned to the
target topic.

The majority of Alg1’s attacks consist of selecting
320 documents with high target-topic proportions and
adding about 350 tokens of “marijuana” into them.
This is necessary to boost the count of the attack word,
which was small in the original corpus, in order for the
attack word to enter top 10. However, Alg1 is more nu-
anced: it also added some top words in the target topic
(i.e. “states”, “s”, “state” in the legislation topic), in
conjunction with “marijuana”, to selected documents
with relatively low target topic proportion. This be-
havior made these documents more target topic heavy
and potentially improved marijuana’s contribution to

the target topic. The detailed statistics of attack be-
haviors is in the supplemental material Appendix D.

Alg1 effectively attacked LDA on the second attack,
too, where the target probability of “debt” and “ceil-
ing” are set to the same as the rank 8-th word in the
market topic. Figure 2 shows the curves for “debt”
due to space limit; Other figures and the attack be-
haviors are similar to the first attack, and are left in
supplementary material Appendix D.

4.2 Demote- and Replace-Word Attacks

Another kind of attack demotes the probability of a
specific word w in the target topic, making w invisible
to LDA users who examine only the top topic words.
For example, LDA on the original CONG corpus con-
sistently produced a war topic with “Iraq” in its top
10 words, see Figure 3(a). We demonstrate an attack
that demotes “Iraq.” Let k be the index of the war
topic and w11 the 11-th word in that topic. We define
the attack target probability to reduce the probabil-
ity of “Iraq”: ϕ∗k,Iraq = ϕk,w11

, and then renormalize
ϕ∗k. For other topics k′ 6= k, ϕ∗k′ = ϕk′ . We then
run Alg1 with this target ϕ∗. “Iraq” disappeared from
the topic’s top-10 (it ranked 12th after the attack),
replace by “WTO” which ranked 11-th before attack
(panel b). All other top words’ rank did not change.
For comparison, we let the RndAtk baseline delete
“Iraq” from randomly selected documents that contain
the word, subject to the constraint encoded in the M
set. Alg1 optimized the objective function much more
rapidly than RndAtk (panel c), and demoted the rank
of “Iraq” more rapidly (panel d). Panel (e) shows that
Alg1 removed “Iraq” in a selective way that more than
half of the reduction is contributed to the war topic.
This was not the case for RndAtk. Alg1 chose 150 doc-
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uments with the highest target topic proportions and
deleted about 170 tokens of “Iraq” from these docu-
ments. However, Alg1 also deleted other top words in
the target topic (e.g. “united”, “states”, “s” in the
war topic) from other documents containing “Iraq”,
to make those documents (and the “Iraq” in them)
less associated with the target topic. More details are
discussed in Appendix D.

Similarly, replace-word attacks (substitute one top
word with another) can be achieved by a combination
of promote and demote attacks. An example on the
WISH corpus can be found in Appendix D.5.

4.3 Part-of-Speech (POS) Attacks

So far, the attacks modify the document-word ma-
trix M entry-wise (i.e. adding or removing word to-
kens) without considering how the poisoned corpus
may read. Simply appending Ld tokens of “marijuana”
to a document is rather suspicious and prone to detec-
tion. Suppose the attacker wishes to introduce attack
words into documents by only replacing existing words
with the same POS. This ensures grammaticality of
the poisoned corpus and may evade parser-based au-
tomatic corpus checking, for instance. Our framework
can encode this POS constraint in the M set (19) in the
obvious way. We add this constraint to the promote-
word “marijuana” attack. The attack effects are very
similar to Figure 1. Alg1’s attack behavior is different,
though: it mainly replaced the top words in the target
topic (i.e. “bill”, “legislation” and “state”) in selected
documents with “marijuana”. All four words have the
same POS (uncountable noun). This behavior soon
made “marijuana” the top word in the target topic.
Details are in Appendix D.

4.4 Sentence Attacks

Perhaps a more practical, harder to detect attack is
for an attacker to only add sentences (from a candi-
date corpus) to or remove existing sentences from any
document. Again, this can be easily incorporated into
the M set (19). We demonstrate such an attack on
the WISH corpus, where the attack goal is to move a
specific word from the top word list of a source topic
to the top word list of a target topic. Specifically,
vanilla LDA on the WISH corpus consistently returns
a president topic with a top word president. Our at-
tack goal is to move the word “president” from the
source topic president to the target topic peace. This
goal is encoded as a combination of demote-word at-
tack in the source topic (denote as k1) and a promote-
word attack in the target topic (denote as k2): we
set ϕ∗k1,president = ϕk1,w100 and ϕ∗k2,president = ϕk2,w9 .
Changes must be whole sentences, where the candi-
date corpus is the original WISH corpus itself. In other
words, the attacker can copy any sentence in the WISH

corpus and add the copy to any document, or remove
any sentence from any document. The RndAtk base-
line is also a combination which randomly adds sen-
tences containing “president”s and deletes sentences
containing “president”s and “ron paul”s 2, subject to
the constraint encoded in M.

Figure 4 shows Alg1’s effectiveness in the sentence at-
tack. Panel (a,b) and Panel(c,d) show the top 10 words
in the source topic and target topic, respectively. In
the source topic, the word “president” (green) disap-
peared from top-10 after the attack (now ranked 80th)
while “health” and “more” entered top-10. We note
that the word “ron” was also forced out of top-10
(ranked 11th after the attack) because it frequently
co-occurs with “president” in the same sentences, and
is affected under sentence attacks. In the target topic,
Alg1 promoted the word “president” (red) to the 10th
and expelled the word “year” (green) from the top-10
(ranked 11th after attack). In summary, Alg1 success-
fully moved the word “president” from the source topic
to the target topic. Alg1 optimized objective function
rapidly as shown in Panel (e). The rank and contribu-
tion of “president” in the source topic shown in Panel
(f,h) are similar to the previous demote-word attack,
while those in the target topic shown in Panel (g,i) are
similar to the previous promote-word attack.

Alg1’s sentence attack behaviors, some shown in Ta-
ble 2 and detailed statistics shown in Appendix D.7,
were a trade-off between promote-word attack for word
“president” in the target topic and demote-word at-
tack for the same word in the source topic. It inserted
about 300 sentences containing “president” into docu-
ments with high target topic proportion, and deleted
about 50 instances of the sentence “president ron paul
2008” from documents with high source topic propor-
tion, among other changes.

We also experimented with two extreme strategies,
where the attacker is allowed to either only inserting
sentences or only deleting sentences. None of the ex-
treme strategies performed as well as Alg1. When only
inserting sentences, the attacker needed to insert 400
sentences (50 more than Alg1) containing “president”
into documents to promote “president” up to top-10
in the target topic, and could not demote “president”
out of top-10 in the source topic. When only delet-
ing sentences, the attacker needed to delete about 100
sentences (almost all containing “president ron paul”)
to demote “president” in the source topic, but could
not promote “president” in the target topic. In sum-
mary, Alg1 was able to trade-off between inserting or
deleting sentences intelligently.

2We only consider deleting sentences containing words
“president” and “ron paul” because we observe that in
Alg1, the optimal attack only deletes such sentences.
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Figure 4: Sentence attack: moving the word “president” from the source topic president to the target topic peace
in the WISH corpus

Table 2: Sampled attack behaviors for sentence attack
on WISH

Document before attack Attack behavior
all needs love each other +smarter president rudy

prosperity bring 2008 world happiness +president romney
may new year peace +president kokopelli

may everyone always love +president zappa
peace, friend and family health +president hillery

peace, all us health please +president democratic obama
peace, hope forever love more +president obama

peace world, new home and car +president obama
president 2008 ron paul Removed

president ron paul Removed

5 Discussions

Alg1 takes about 20 minutes to complete a run of the
promote-word attack on CONG on a 2-core 3.6 GHz 8
GB memory Linux desktop. The time for other attacks
are similar. We note that should real attacks happen,
the attacker would likely be an entity with access to
much more powerful computation resources. Besides,
corpus poisoning can be done offline. Thus the speed
will not be an issue that deters such attacks.

Our experiment suggests that the attacker doesn’t
need to know exactly what LDA implementation is
used. Even though the attacks in this paper are de-
rived for LDA with variational methods, they work
equally well on LDA with MCMC methods. We sim-
ply take the poisoned corpus by Alg1 and give it
to LDA with collapsed Gibbs sampling (Griffiths &
Steyvers 2004). On the promote-word “marijuana”
attack in Section 4.1, the results are nearly identi-
cal to Figure 1. The only difference is minor fluctua-
tions in the rank of other top words in the target topic
(e.g. word with rank 8 moves to rank 11). This sug-
gests that the attacker can compute/design his attack

against some common, public available implementa-
tion of LDA and the attack could be effective against
other LDA implementations.

Our ultimate goal is to defend LDA against corpus poi-
soning attacks. Within the machine learning commu-
nity, there are two lines of research on general defense
strategies: robust learning and optimal attack. The
two lines are distinct but complement each other. Ro-
bust learning designs desensitized models that are ro-
bust under attacks in a minimax sense (e.g. (Globerson
& Roweis 2006, Torkamani & Lowd 2013, Barreno
et al. 2010, Laskov & Lippmann 2010)). Optimal at-
tack quantifies the attacker: the harm done to a (po-
tential vanilla) model when the attacker performs op-
timally (e.g. (Biggio et al. 2012)). Both lines of re-
search are important. Our research on optimal at-
tacks characterizes the worst-case attacks and offers a
novel angle for defenses. For instance, in the experi-
ments we showed that injecting several hundred words
(about 0.1% change) into the corpus will modify the
top topic words. However, the optimal attack needs to
be highly selective on which documents to poison. A
potential defense derived from our result is to alert hu-
man analysts to carefully inspect documents with high
target topic proportion. This type of defense comple-
ments robust learning, while the latter may sacrifice
model performance due to the need to desensitize the
learner (Barreno et al. 2010).
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A The KKT Conditions

The optimization problem for variational inference on LDA is:

min
η,γ,φ

KL(q(ϕ,θ,Z | η,γ,φ)‖p(ϕ,θ,Z |W, α, β)) (20)

s.t. −ηkv ≤ 0, ∀k, v;

−γdk ≤ 0, ∀d, k;

−φdik ≤ 0, ∀d, i, k;∑
k

φdik = 1, ∀d, i.

To derive the KKT conditions, we first introduce KKT multipliers ληkv
, λγdk , λφdik

and ρφdi
to each constraint

in Eq (20). The KKT conditions have four parts:

Stationarity

ηkv − β −
∑
d

∑
i

φdikI1(wdi = v)− ληkv
= 0 (21)

γdk − α−
∑
i

φdik − λγdk = 0

log φdik − (Ψ(γdk)−
∑
k′

Ψ(γdk′) + Ψ(ηkwdi
)−Ψ(

∑
v′

ηkv))− 1− λφdik
+ ρφdi

= 0.

Complementary Slackness

−ληkv
ηkv = 0 (22)

−λγdkγdk = 0

−λφdik
φdik = 0.

Primal Feasibility

−ηkv ≤ 0 (23)

−γdk ≤ 0

−φdik ≤ 0∑
k

φdik − 1 = 0.

Dual Feasibility

ληkv
≥ 0 (24)

λγdk ≥ 0

λφdik
≥ 0.

First, we observe that Eq (21) implies that −ηkv, −γdk and −φdik are both strictly negative because:

−ηkv ≤ −β < 0

−γdk ≤ −α < 0

−φdik = − exp((Ψ(γdk)−
∑
k′

Ψ(γdk′) + Ψ(ηkwdi
)−Ψ(

∑
v′

ηkv))− 1− λφdik
+ ρφdi

) < 0.

We combine the above result with the complementary slackness Eq (22):

ληkv
= 0 (25)

λγdk = 0

λφdik
= 0.
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We plug Eq (25) into Eqs (21) and (23):

ηkv − β −
∑
d

∑
i

φdikI1(wdi = v) = 0

γdk − α−
∑
i

φdik = 0

log φdik − (Ψ(γdk)−
∑
k′

Ψ(γdk′) + Ψ(ηkwdi
)−Ψ(

∑
v′

ηkv))− 1 + ρφdi
= 0

ρφdi
− log[

∑
k

exp(Ψ(γdk)−
∑
k′

Ψ(γdk′) + Ψ(ηkwdi
)−Ψ(

∑
v′

ηkv) + 1)] = 0. (26)

Eqs (26) and (25) are equivalent with the KKT conditions in Eqs (21),(23),(24) and (22). We focus on the
conditions on primal variables and further simplify Eq (26) to get the equivalent form of KKT condition:

ηkv − β −
∑
d

∑
i

φdikI1(wdi = v) = 0

γdk − α−
∑
i

φdik = 0

φdik −
exp(Ψ(γdk) + (Ψ(ηkwdi

)−Ψ(
∑
v′ ηkv)))∑

k exp(Ψ(γdk) + (Ψ(ηkwdi
)−Ψ(

∑
v′ ηkv′)))

= 0. (27)

These are exactly the variational inference formulas in (Blei et al. 2003). After changing the notation (discussed
in the main paper), we get Eq (4).

B Implicit Functions

We review the definition of implicit functions. We denote the ε−ball of x ∈ Rd as N(x, ε) = {y : ‖y− x‖2 < ε}.
We call ŷ(x) ∈ Rm an implicit function of x ∈ Rn defined by implicit equation f(x,y) = 0, where f(x,y) :
Rn+m 7→ Rm, if for any x, ŷ(x) satisfies f(x,y) = 0 and there exists ε > 0 such that for any x + δ ∈ N(x, ε),
only ŷ(x + δ) both satisfies f(x,y) = 0 and belongs to N(ŷ(x), ε).

Then we show µ̂(M) is an implicit function of µ defined by implicit equations fµ = 0. First, fµ is a (multivariate)
continuous differential function of µ because each component of fµ consists of continuous differential terms.

Second, by the assumption in the theorem, fµ has an invertible Jacobian matrix
∂fµ
∂µ . Therefore, according

to implicit function theorem (Danilov 2001), µ̂(M) is an implicit function of M and µ̂(M) is continuously
differentiable with respect to M. The gradient is as in Eq (14).

C Fast Approximation for Computing ∂η̂(M)
∂M

Theorem 1 If
∂fη
∂φ = 0, the element at kv-th row and dv′-th column in the Jacobian matrix ∂η̂(M)

∂M is

[
∂η̂(M)

∂M
]kv,dv′ = φdvkI1(v = v′). (28)

Proof: First, ∂η̂(M)
∂M is the first Nη rows of the size (Nη +Nγ +Nφ)×NM Jacobian matrix ∂µ̂(M)

∂M ,

∂µ̂(M)

∂M
=

[
∂η̂(M)
∂M

∂(γ̂,φ̂)(M)
∂M

]
,

where ∂η̂(M)
∂M is a Nη ×NM Jacobian matrix, ∂(γ̂,φ̂)(M)

∂M is a (Nγ +Nφ)×NM Jacobian matrix.

We define a selection matrix P , [I 0] (size of Nη × (Nη + NM + Nφ)) and ∂η̂(M)
∂M is selected from ∂µ̂(M)

∂M by
multiplying P on the left:

∂η̂(M)

∂M
= P

∂µ̂(M)

∂M
. (29)
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∂µ̂(M)
∂M is computed as in Eq (14). We introduce the two terms on the right side of Eq (14) respectively.

The first term, (
∂fµ
∂µ )−1 is the inversion of a Jacobian matrix with size of (Nη + Nγ + Nφ) × (Nη + Nγ + Nφ).

Similar to the divide of ∂µ̂(M)
∂M , we write

∂fµ
∂µ (and correspondingly its inversion) as 4 blocks:

(
∂fµ
∂µ

)−1 =

[
∂fη
∂η

∂fη
∂(γ,φ)

∂(fγ ,fφ)
∂η

∂(fγ ,fφ)
∂(γ,φ)

]−1
=

[
A B
C D

]
, (30)

where
∂fη
∂η and A have size Nη × Nη,

∂fη
∂(γ,φ) and B have size Nη × (Nγ + Nφ),

∂(fγ ,fφ)
∂η and C have size

(Nγ +Nφ)×Nη, and
∂(fγ ,fφ)
∂(γ,φ) and D have size (Nγ +Nφ)× (Nγ +Nφ).

The second term on the right side
∂fµ
∂M has (Nη +Nγ +Nφ) rows and NM columns. We write it as two blocks

according to the division of ∂µ̂(M)
∂M ,

∂fµ
∂M

=

[
∂fη
∂M

∂(fγ ,fφ)
∂M

]
, (31)

where
∂fη
∂M has size Nη ×NM and

∂(fγ ,fφ)
∂M has size (Nγ +Nφ)×NM.

We plug the block form of matrices in Eqs (29), (30) and (31) into Eq (14):

∂η̂(M)

∂M
= −P

(
∂fµ
∂µ

)−1
∂fµ
∂M

= −
[
I 0

] [A B
C D

][ ∂fη
∂M

∂(fγ ,fφ)
∂M

]
= −

(
A
∂fη
∂M

+ B
∂(fγ , fφ)

∂M

)
. (32)

Now we need to calculate the two blocks A and B of the inverted Jacobian matrix (
∂fµ
∂µ )−1 . In the assumption

of theorem,
∂fη
∂φ = 0. Note that

∂fη
∂φ = 0. According to Eq (2), we have

∂fη
∂γ = 0 and

∂fη
∂(γ,φ) = 0. Therefore,

∂fµ
∂µ

is a blockwise lower triangle matrix. Based on the property of blockwise inversion of matrix, we get

A = I,B = 0.

We put the values of A and B into Eq (32) and get

∂η̂(M)

∂M
= − ∂fη

∂M
, (33)

where each element in
∂fη
∂M is calculated by Eq (2):

∂fηkv
(µ,M)

∂mdv′
= −φdvkI1(v = v′). (34)

We combine Eq (33) and Eq (34) and get

∇mdv′ η̂kv(M) = −(−φdvkI1(v = v′)) = φdvkI1(v = v′). (35)

We note that in practice Theorem 1’s condition does not hold. Nonetheless, Theorem 1 provides an approximation
to ∇Mη̂kv(M). In our experiments, this approximation works well.

D Detailed Experiment Results

D.1 Rank and Contribution of “ceiling” in Promote-Word Attack

The rank and contribution of word “ceiling” in promote-word attack on AP are shown in Figure 5. The results
are very similar as results of “marijuana” and “debt” in promote-word attack shown in main paper.
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Figure 5: (second-part of) Promote-word attack on word “debt” and “ceiling” in the market topic from AP.
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Figure 6: (second-part of) Replace-word attack to replace word “Paul” with “Weasley” in the president topic
from WISH.

D.2 Rank and Contribution of “Paul” in Replace-Word Attack

We show the rank and contribution of word “Paul” in replace-word attack on WISH in Figure 6. The results are
very similar as results of “Iraq” in demote-word attack shown in main paper.

D.3 Detailed Attack Behavior of Promote-Word Attacks

We show the detailed attack behavior of Alg1 in promote-word attack on CONG and AP on documents in
Figure 7. The documents are shown from up to down sorted by the decreasing amount of changes defined in
Eq (19). For each document d, we show the target topic proportion θ̂dk , γdk/

∑
k γdk and the count changes

(in the document) of 4 words which have the largest changes on the whole corpus.
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Figure 7: Statistics of attack behavior of promote-word attacks

D.4 Detailed Attack Behavior of Demote-Word Attack

We plot the attack behavior of the Alg1 in demote-word attack on CONG in Figure 8(a). Things we show are
exactly the same as in promote-word attack.
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Figure 8: Statistics of attack behavior of demote “Iraq” attack and replace “Paul” with “Weasley” attack
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Figure 9: Replace-word attack on “Paul” and “Weasley” in the president topic from WISH

D.5 Replace-Word Attack

This kind of attack replaces a top-10 word in the target topic with another word. LDA on the original WISH
corpus consistently produced a president topic with “Paul” (as in Ron Paul) as a top word. To demonstrate
replace-word attack, we replace “Paul” with “Weasley” (as in Ron Weasley of Harry Potter fame). The target
encoding is a combination of promotion and demotion with ϕ∗k,paul = ϕk,w11

and ϕ∗k,weasley = ϕk,w9
, then

renormalize ϕ∗k. The RndAtk baseline is also a combination which randomly adds “Weasley” and deletes “Paul”,
subject to the constraint encoded in M. Similar to previous attacks, Figure 9 shows Alg1’s effectiveness in the
replace-word attack. In Panel (a,b) Alg1 successfully replaced word “Paul” with “Weasley” in top-10 words.
“Paul” ranked 11th after attack. The objective function are optimized rapidly in Panel (c). The rank and
contribution of “Weasley” in Panel (d,e) are similar to the promote-word attack, and those of “Paul” are similar
to the demote-word attack. Alg1’s attack behavior was a combination of promote-word attack and demote-word
attack. It mainly replaced “Paul” with “Weasley” in selected documents with high target topic proportion. We
plot the attack behavior of the Alg1 in replace-word attack on WISH in Figure 8(b). The settings of things
we show are exactly the same as in previous attacks. Modification on only two words “Paul” and “Weasley” is
shown because no modification exists on other words.
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Figure 10: Statistics of attack behavior of attack with POS constraint



Shike Mei, Xiaojin Zhu

We plot the attack behavior of the Alg1 in promote-word attack with POS constraint on CONG in Figure 10.
The things we show are exactly the same as in previous attacks.

D.7 Detailed Attack Behavior of Attack with POS Constraint

We plot the attack behavior of the Alg1 in sentence attack on WISH in Figure 11. The things we show are
exactly the same as in previous attacks.
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Figure 11: Statistics of attack behavior of attack with sentence attack
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