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Abstract

Basic decisions, such as judging a person as a friend or foe, involve categorizing
novel stimuli. Recent work finds that people’s category judgments are guided by
a small set of examples that are retrieved from memory at decision time. This
limited and stochastic retrieval places limits on human performance for proba-
bilistic classification decisions. In light of this capacity limitation, recent work
finds that idealizing training items, such that the saliency of ambiguous cases is
reduced, improves human performance on novel test items. One shortcoming of
previous work in idealization is that category distributions were idealized in an ad
hoc or heuristic fashion. In this contribution, we take a first principles approach
to constructing idealized training sets. We apply a machine teaching procedure
to a cognitive model that is either limited capacity (as humans are) or unlimited
capacity (as most machine learning systems are). As predicted, we find that the
machine teacher recommends idealized training sets. We also find that human
learners perform best when training recommendations from the machine teacher
are based on a limited-capacity model. As predicted, to the extent that the learning
model used by the machine teacher conforms to the true nature of human learners,
the recommendations of the machine teacher prove effective. Our results provide a
normative basis (given capacity constraints) for idealization procedures and offer
a novel selection procedure for models of human learning.

1 Introduction

Judging a person as a friend or foe, a mushroom as edible or poisonous, or a sound as an \l\ or
\r\ are examples of categorization tasks. Category knowledge is often acquired based on exam-
ples that are either provided by a teacher or past experience. One important research challenge
is determining the best set of examples to provide a human learner to facilitate learning and use
of knowledge when making decisions, such as classifying novel stimuli. Such a teacher would be
helpful in a pedagogical setting for curriculum design [1, 2].

Recent work suggests that people’s categorization decisions are guided by a small set of examples
retrieved at the time of decision [3]. This limited and stochastic retrieval places limits on human per-
formance for probabilistic classification decisions, such as predicting the winner of a sports contest
or classifying a mammogram as normal or tumorous [4]. In light of these capacity limits, Giguère
and Love [3] determined and empirically verified that humans perform better at test after being
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trained on idealized category distributions that minimize the saliency of ambiguous cases during
training. Unlike machine learning systems that can have unlimited retrieval capacity, people per-
formed better when trained on non-representative samples of category members, which is contrary
to common machine learning practices where the aim is to match training and test distributions [5].

One shortcoming of previous work in idealization is that category distributions were idealized in
an ad hoc or heuristic fashion, guided only by the intuitions of the experimenters in contrast to a
rigorous systematic approach. In this contribution, we take a first principles approach to constructing
idealized training sets. We apply a machine teaching procedure [6] to a cognitive model that is
either limited capacity (as humans are) or unlimited capacity (as most machine learning systems
are). One general prediction is that the machine teacher will idealize training sets. Such a result
would establish a conceptual link between idealization manipulations from psychology and optimal
teaching procedures from machine learning [7, 6, 8, 2, 9, 10, 11]. A second prediction is that
human learners will perform best with training sets recommended by a machine teacher that adopts
a limited capacity model of the learner. To the extent that the learning model used by the machine
teacher conforms to the true nature of human learners, the recommendations of the machine teacher
should prove more effective. This latter prediction advances a novel method to evaluate theories of
human learning. Overall, our work aims to provide a normative basis (given capacity constraints)
for idealization procedures.

2 Limited- and Infinite-Capacity Models

Although there are many candidate models of human learning (see [12] for a review), to cement the
connection with prior work [3] and to facilitate evaluation of model variants differing in capacity
limits, we focus on exemplar models of human learning. Exemplar models have proven successful
in accounting for human learning performance [13, 14], are consistent with neural representations of
acquired categories [15], and share strong theoretical connections with machine learning approaches
[16, 17]. Exemplar models represent categories as a collection of experienced training examples. At
the time of decision, category examples (i.e., exemplars) are activated (i.e., retrieved) in proportion
to their similarity to the stimulus. The category with the greatest total similarity across members
tends to be chosen as the category response. Formally, the categorization problem is to estimate the
label ŷ of a test item x from its similarity with the training exemplars {(x1, y1), . . . , (xn, yn)}.
Exemplar models are consistent with the notion that people stochastically and selectively sample
from memory at the time of decision. For example, in the Exemplar-Based Random Walk (EBRW)
model [18], exemplars are retrieved sequentially and stochastically as a function of their similarity
to the stimulus. Retrieved exemplars provide evidence for category responses. When accumulated
evidence (i.e., retrieved exemplars) for a response exceeds a threshold, the corresponding response
is made. The number of steps in the diffusion process is the predicted response time.

One basic feature of EBRW is that not all exemplars in memory need feed into the decision process.
As discussed by Giguère and Love [3], finite decision thresholds in EBRW can be interpreted as
a capacity limit in memory retrieval. When decision thresholds are finite, a limited number of
exemplars are retrieved from memory. When capacity is limited in this fashion, models perform
better when training sets are idealized. Idealization reduces the noise injected into the decision
process by limited and stochastic sampling of information in memory.

We aim to show that a machine teacher, particularly one using a limited-capacity model of the
learner, will idealize training sets. Such a result would provide a normative basis (given capacity
constraints) for idealization procedures. To evaluate our predictions, we formally specify a limited-
and unlimited-capacity exemplar model. Rather than work with EBRW, we instead choose a simpler
mathematical model, the Generalized Context Model (GCM, [14]), which offers numerous advan-
tages for our purposes. As discussed below, a parameter in GCM can be interpreted as specifying
capacity and can be related to decision threshold placement in EBRW’s drift-diffusion process.

Given a finite training set (or a teaching set, we will use the two terms interchangeably) D =
{(x1, y1), . . . , (xn, yn)} and a test item (i.e., stimulus) x, GCM estimates the label probability as:

p̂(y = 1 | x,D) =

(
b+

∑
i∈D:yi=1 e

−c d(x,xi)
)γ

(
b+

∑
i∈D:yi=1 e

−c d(x,xi)
)γ

+
(
b+

∑
i∈D:yi=−1 e

−c d(x,xi)
)γ (1)
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where d is the distance function that specifies the distance (e.g., the difference in length between
two line stimuli) between the stimulus x and exemplar xi, c is a scaling parameter that specifies
the rate at which similarity decreases with distance (i.e. the bandwidth parameter for a kernel),
and the parameter b is background similarity, which is related to irrelevant information activated
in memory. Critically, the response scaling parameter, γ, has been shown to bear a relationship
to decision threshold placement in EBRW [18]. In particular, Equation 1 is equivalent to EBRW’s
mean response (averaged over many trials) with decision threshold bounds placed γ units away for
the starting point for evidence accumulation. Thus, GCM with a low value of γ can be viewed as
a limited capacity model, whereas GCM with a high value for γ converges to the predictions of
an infinite capacity model. These two model variations (low and high γ as surrogates for low- and
high-capacity) will figure prominently in our study and analyses.

To select a binary response, the learner samples a label according to the probability ŷ ∼
Bernoulli(p̂(y = 1 | x,D)). Therefore, the learner makes stochastic predictions. When mea-
suring the classification error of the learner, we will take expectation over this randomness. Let the
distance function be d(xi, xj) = |xi − xj |. Thus a GCM learner can be represented using three
parameters {b, c, γ}.

3 Machine Teaching for the GCM Learners

Machine teaching is an inverse problem of machine learning. Given a learner and a test distribution,
machine teaching designs a small (typically non-iid) teaching set D such that the learner trained on
D has the smallest test error [6]. The machine teaching framework poses an optimization problem:

min
D∈D

loss(D) + effort(D). (2)

The optimization is over D, the teaching set that we present to the learner. For our task, D =
(x1, y1), . . . , (xn, yn) where xi ∈ [0, 1] represents the 1D feature of the ith stimulus, and yi ∈
{−1, 1} represents the ith label. The search space D = {(X × Y)n : n ∈ N} is the (infinite)
set of finite teaching sets. Importantly, D is not required to consist of iid items drawn from the
test distribution p(x, y). Rather, D will usually contain specially arranged items. This is a major
difference to standard machine learning.

Since we want to minimize classification error on future test items, we define the teaching loss
function to be the generalization error:

loss(D) = E(x,y)∼p(x,y)Eŷ∼p̂(y|x,D)1y 6=ŷ. (3)

The first expectation is with respect to the test distribution p(x, y). That is, we still assume that
test items are drawn iid from the test distribution. The second expectation is w.r.t. the stochastic
predictions that the GCM learner makes. Note that the teaching set D enters the loss() function
through the GCM model p̂(y | x,D) in (1). We observe that:

loss(D) = Ex∼p(x) p(y = 1 | x)p̂(y = −1 | x,D) + p(y = −1 | x)p̂(y = 1 | x,D)

=

∫  1− 2p(y = 1 | x)

1 +

(
b+

∑
i∈D:yi=−1 e

−c d(x,xi)

b+
∑

i∈D:yi=1 e
−c d(x,xi)

)γ + p(y = 1 | x)

 p(x)dx. (4)

The teaching effort function effort(D) is a powerful way to specify certain preferences on the teach-
ing set space D. For example, if we use effort(D) = |D| the size of D then the machine teaching
problem (2) will prefer smaller teaching sets. In this paper, we use a simple definition of effort():
effort(D) = 0 if |D| = n, and∞ otherwise. This infinity indicator function simply acts as a hard
constraint so thatD must have exactly n items. Equivalently, we may drop this effort() term from (2)
altogether while requiring the search space D to consist of teaching sets of size exactly n.

In this paper, we consider test distributions p(x, y) whose marginal on x has a special form. Specif-
ically, we assume that p(x) is a uniform distribution over m distinct test stimuli z1, . . . , zm ∈ [0, 1].
In other words, there are only m distinct test stimuli. The test label y for stimuli zj in any given
test set is randomly sampled from p(y | zj). Besides matching the actual behavioral experiments,
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this discrete marginal test distribution affords a further simplification to our teaching problem: the
integral in (4) is replaced with summation:

min
x1...xn∈[0,1];y1...yn∈{−1,1}

1

m

m∑
j=1

 1− 2p(y = 1 | zj)

1 +

(
b+

∑
i:yi=−1 e

−c d(zj,xi)

b+
∑

i:yi=1 e
−c d(zj,xi)

)γ + p(y = 1 | zj)

 . (5)

It is useful to keep in mind that y1 . . . yn are the training item labels that we can design, while y is a
dummy variable for the stochastic test label.

In fact, equation (5) is a mixed integer program because we design both the continuous training
stimuli x1 . . . xn and the discrete training labels y1 . . . yn. It is computationally challenging. We
will relax this problem to arrive at our final optimization problem. We consider a smaller search
space D where each training item label yi is uniquely determined by the position of xi w.r.t. the
true decision boundary θ∗ = 0.5. That is, yi = 1 if xi ≥ θ∗ and yi = −1 if xi < θ∗. We
do not have evidence that this reduced freedom in training labels adversely affect the power of the
teaching set solution. We now removed the difficult discrete optimization aspect, and arrive at the
following continuous optimization problem to find an optimal teaching set (note the changes to
selector variables i):

min
x1...xn∈[0,1]

1

m

m∑
j=1

 1− 2p(y = 1 | zj)

1 +

(
b+

∑
i:xi<0.5 e

−c d(zj,xi)

b+
∑

i:xi≥0.5 e
−c d(zj,xi)

)γ + p(y = 1 | zj)

 . (6)

4 Experiments

Using the machine teacher, we derive a variety of optimal training sets for low- and high-capacity
GCM learners. We then evaluate how humans perform when trained on these recommended items
(i.e. training sets). The main predictions are that the machine teacher will idealize training sets
and that humans will perform better on optimal training sets calculated using the low-capacity GCM
variant. In what follows, we first specify parameter values for the GCM variants, present the optimal
teaching sets we calculate, and then discuss human experiments.

4.1 Specifying GCM parameters

The machine teacher requires a full specification of the learner, including its parameters. Parameters
were set for the low-capacity GCM model by fitting the behavioral data from Experiment 2 of
Giguère and Love [3]. GCM was fit to the aggregated data representing an average human learner
by solving the following optimization problem:

{b̂, ĉ, γ̂} = arg min
b̂,ĉ,γ̂

∑
i∈X(1)

(
g(1)(xi)− f (1)(xi)

)2
+
∑

j∈X(2)

(
g(2)(xj)− f (2)(xj)

)2
(7)

where X(1) and X(2) are sets of unique test stimuli for the two training conditions (actual and ideal-
ized) in Experiment 2. We define two functions to describe the estimated and empirical probabilities,

respectively: g(cond)(xi) = p(yi = 1 | xi, D(cond)), f (cond)(xi) =

∑
j∈D(cond):yj=1 1(xj=xi)∑

j′∈D(cond) 1(x
′
j=xi)

. The

function g above is defined using GCM in Equation 1. We solved Equation 7 to obtain the low-
capacity GCM parameters that best capture human performance {b̂, ĉ, γ̂} = {5.066, 2.964, 4.798}.
We define a high-capacity GCM by only changing the γ̂ parameter, which is set an order of magni-
tude higher at γ̂ = 47.98.

4.2 Optimal Teaching Sets

The machine teacher was used to generate a variety of training sets that we evaluated on human
learners. All training sets had size n = 20, which was chosen to maximize expected differences
in human test performance across training sets. All conditions involved the same test conditional
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Figure 1: The test conditional distribution. Each point shows a test item zi and its conditional
probability to be in the category y = 1. The vertical dashed line shows the location of the true
decision boundary θ∗ = 0.5.

distribution p(y | x) (see Figure 1). The test set consisted of m = 60 representative items evenly
spaced over the stimulus domain [0, 1] with a probabilistic category structure. The conditional dis-
tribution p(y = 1 | x = zj) for j = 1 . . . 60 was adapted from a related study [3]. We then solved
the machine teaching problem (6) to obtain the optimal teaching sets for low- and high-capacity
learners.

The optimal training set for the low-capacity GCM places items for each category in a clump far
from the boundary (see Figure 2 for the optimal training sets). We refer to this optimal training set as
Clump-Far. The placement of these items far from the boundary reflects the low-capacity (i.e., low
γ value) of the GCM. By separating the items from the two categories, the machine teacher makes
it less likely that low-capacity GCM will erroneously retrieve items from the opposing category at
the time of test. As predicted, the machine teacher idealized the Clump-Far training set.

A mathematical property of the high-capacity GCM suggests that it is sensitive only to the placement
of training items adjacent to the decision boundary θ∗ (all other training items have exponentially
small influence). Therefore, for the high-capacity model up to computer precision, there is no unique
optimal teaching set but rather a family of optimal sets (i.e., multiple teaching sets with the same
loss or expected test error). We generated two training sets that are both optimal for the high-
capacity model. The Clump-Near training set has one clump of similar items for each category close
to the boundary. In contrast, the Spread training set uniformly spaces items outward, mimicking
the idealization procedure in Giguère and Love [3]. We also generated Random teaching sets by
sampling from the joint distribution U(x)p(y | x), where U(x) is uniform in [0, 1] and p(y | x) is
the test conditional distribution. Note Random is the traditional iid training set in machine learning.
The test error of the low- and high-capacity GCM under Random teaching sets was estimated by
generating 10,000 random teaching sets.

Table 1 shows that Clump-Far outperforms other training sets for the low-capacity GCM. In con-
trast, Clump-Far, Clump-Near, and Spread are all optimal for high-capacity GCM, reflecting the
fact that for high-capacity GCM the symmetry of the inner-most training item pair about the true
decision boundary θ∗ determines the learned model. Not surprisingly, Random teaching sets lead to
suboptimal test errors on both low- and high-capacity GCM.

Table 1: Loss (i.e. test error) for different teaching sets on low- and high-capacity GCM. Note the
smallest loss 0.216 matches the optimal Bayes error rate.

GCM Model Clump-Far Spread Clump-Near Random
Low-capacity 0.245 0.261 0.397 M=0.332, SD=0.040
High-capacity 0.216 0.216 0.216 M=0.262, SD=0.066

In summary, we produced four kinds of teaching sets: (1) Clump-Far which is the optimal teaching
set for the low-capacity GCM, (2) Spread, (3) Clump-Near, the three are all optimal teaching sets
for the high-capacity GCM, and (4) Random. The next section discusses how human participants
fair with each of these four training sets. Consistent with our predictions, the machine teacher’s
choices idealized the training sets with parallels to the idealization procedures used in Giguère and
Love [3]. They found that human learners benefited when within category variance was reduced
(akin to clumping in Clump-Far and Clump-Near), training items were shifted away from the cat-
egory boundary (akin to Clump-Far), and feedback was idealized (as in all the machine teaching
sets considered). Their actual condition in which training sets were not idealized resembles the
Random condition here. As hoped, low-capacity and high-capacity GCM make radically different
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Figure 2: (A) The teaching sets. The points show the machine teaching sets. Overlapping training
points are shown as clumps along with the number of items. A particular Random teaching set is
shown. All training labels y were in {1,−1}, but dithered vertically for viewing clarity. (B) The
predictive distribution p̂(y = 1 | z,D) produced by the low-capacity GCM given a teaching set D.
The vertical dashed lines show the position of the true decision boundary θ∗. The curves for the
high-capacity GCM were omitted for space.

predictions. Whereas high-capacity GCM is insensitive to variations across the machine teaching
sets, low-capacity GCM should perform better under Clump-Far and Spread. The Clump-Near set
leads to more errors in low-capacity GCM because items are confusable in memory and therefore
limited samples from memory can lead to suboptimal classification decisions. In the next section,
we evaluate how humans perform with these four training sets, and compare human performance to
that of low- and high-capacity GCM.

4.3 Human Study

Human participants were trained on one of the four training sets: Clump-Far, Spread, Clump-Near,
and Random. Participants in all four conditions were tested (no corrective feedback provided) on
the m = 60 grid test items z1 . . . zm in [0, 1].

Participants. US-based participants (N = 600) were recruited via Amazon Mechanical Turk, a
paid online crowd-sourcing platform, which is an effective method for recruiting demographically
diverse samples [19] and has been shown to yield results consistent with decision making studies in
the laboratory [20]. In our sample, 297 of the 600 participants were female and the average age was
34.86. Participants were paid $1.00 for completing the study with the highest performing participant
receiving a $20 bonus.

Design. Participants were randomly assigned to one of the four teaching conditions (see Figure 2).
Notice that feedback was deterministic in all the teaching sets provided by the machine teacher, but
was probabilistic as a function of stimulus for the Random condition. For the Random condition,
each participant received a different sample of training items. The test set always consisted of 60
stimuli (see Figure 1). In both training and test trials, stimuli were presented sequentially in a
random order (without replacement) determined for each participant.

Materials and Procedure. The stimuli were horizontal lines of various lengths. Participants learned
to categorize these stimuli. The teaching sets values xi ∈ [0, 1] were converted into pixels by
multiplying it by 400 and adding an offset. The offset for each participant was a uniformly selected
random number from 30 to 100. As the study was performed online (see below), screen size varied
across participants (height x̄=879.16, s=143.34 and width x̄=1479.6, s=271.04).

During the training phase, on every trial, participants were instructed to fixate on a small cross
appearing in a random position on the screen. After 1000 ms, a line stimulus replaced the cross at
the same position. Participants were then to indicate their category decision by pressing a key (“F” or
“J”) as quickly as possible without sacrificing accuracy. Once the participant responded, the stimulus
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Figure 3: Human experiment results. Each bar corresponds to one of the training conditions. (A)
The proportion of agreement between the individual training responses with the Bayes classifier.
(B) The proportion of agreement between the individual test responses with the Bayes classifier. (C)
Inconsistency in individual test responses. The error bars are 95% confidence intervals.

was immediately replaced by a feedback message (“Correct” or “Wrong”), which was displayed for
2000 ms. The screen coordinates (horizontal/vertical) defining the stimulus (i.e., fixation cross and
line) position were randomized on each trial to prevent participants from using marks or smudges
on the screen as an aid. Participants completed 20 training trials.

The procedure was identical for test trials, except corrective feedback was not provided. Instead,
“Thank You!” was displayed following a response. The test phase consisted of 60 trials. At the
end of the test phase each subject was asked to discriminate between the short and long lines from
the Clump-Near training set (i.e. x = 0.435 and x = 0.565, closest stimuli in the deterministically
labeled training sets). Both lines were presented side-by-side, with their order counterbalanced
between participants. Each participant was asked to indicate which one of those is longer.

Results. It is important that people could perceptually discriminate the categories for the exemplars
close to the boundary, especially for the Clump-Near condition in which all the exemplars are close
to the boundary. At the end of the main study, this was measured by asking each participant to
indicate the longer line between the two. Overall 97% participants correctly indicated the longer
line. This did not differ across conditions, F (3, 596) < 0.84, p ≈ 0.47.

The optimal (i.e. Bayes) classifier deterministically assigns correct class label ŷ = sign(x − θ∗) to
an item x. The agreement between training responses and the optimal classifier were significantly
different across the four teaching conditions, F (3, 596) = 66.97, p < 0.05. As expected, the random
sets resulted in the lowest accuracy (M=65.2%) and the Clump-Far condition resulted in the highest
accuracy (M=89.9%) (Figure 3A).

Figure 3B shows how well the test responses agree with the Bayes classifier. The proportional
agreement was significantly different across conditions, F (3, 596) = 9.16, p < 0.05. The
Clump-Far and Spread conditions were significantly different from the Clump-Near condition,
t(228.05) = 3.22, p < 0.05 and t(243.84) = 4.21, p < 0.05, respectively and the Random con-
dition, t(290.84) = 2.39, p < 0.05 and t(297.37) = 3.71, p < 0.05, respectively. The Clump-Far
and the Spread conditions did not differ, t(294.32) = 1.55, p ≈ 0.12. This result shows that the
subjects in the Clump-Far and Spread conditions performed more similar to the Bayes classifier than
the subjects in the other two conditions.

Individual test response inconsistency can be calculated using number of neighboring stimuli that
are categorized in opposite categories [3]. This measure of inconsistency attempts to quantify the
stochastic memory retrieval and higher inconsistency reflects more noisy memory sampling. The in-
consistency significantly differed between the conditions, F (3, 596) = 7.73, p < 0.05 (Figure 3C).
Both Clump-Far and Spread teaching sets showed lower inconsistency, suggesting that those teach-
ing sets lead to less noisy memory sampling. The inconsistencies for these two conditions did
not differ significantly, two-sample t test, t(290.42) = 1.54, p ≈ 0.12. Inconsistencies in condi-
tions Clump-Far and Spread significantly differed from Clump-Near, t(281.7) = −2.53, p < 0.05
and t(291.04) = −2.58, p < 0.05, respectively and Random, t(259.18) = −3.98, p < 0.05 and
t(272.12) = −4.14, p < 0.05, respectively.

We then calculated test loss for each subject as
∑m
i=1 (1− p(hi | zi)) where hi is the response for

the stimulus zi. Figure 4 compares the observed and estimated test performance (i.e. 1− loss()) in
four conditions. Overall, human performance is more closely followed by the low-capacity GCM.
The human performance across four conditions was significantly different, F (3, 596) = 11.15, p <
0.05. The conditions Clump-Far and Spread did not significantly differ, t(295.96) = −0.8, p ≈

7



0.50

0.75 Human
Low-capacity
High-capacity

Pe
rf

or
m

an
ce

Te
st

Clump-Far
Spread

Clump-Near
Random

Figure 4: Empirical test performance of human learners for low- and high-capacity GCM on four
teaching conditions. Test performance is measured as 1 − loss() (see (3)). Humans follow the
low-capacity GCM more closely. The error bars are 95% confidence intervals.

0.42. Test performance in conditions Clump-Far and Spread significantly differed from Clump-
Near condition, t(226.9) = 4.12, p < 0.05 and t(287.97) = 2.19, p < 0.05, respectively and
Random condition, t(238.41) = 4.59, p < 0.05 and t(294.72) = 2.85, p < 0.05, respectively.
Humans performed significantly worse in the Clump-Near condition than in the Random condition,
t(253.94) = −2.394, p < 0.05. A similar pattern was observed for the low-capacity GCM while the
opposite for the high-capacity GCM. Inconsistency, as defined above, significantly correlated with
the test loss, Pearson’s r = 0.56, t(148) = 8.34, p < 0.05. Taken together, these results provide
support for the low-capacity account of human decision making [3].

In order to check whether the variability within the training set is predictive of test performance we
correlated the observed test loss with the estimated loss for the subjects in the Random condition.
We observed a significant correlation between the test loss and the estimated loss for both low- and
high-capacity models, Pearson’s r = 0.273, t(148) = 3.45, p < 0.05 and r = 0.203, t(148) =
2.52, p < 0.05, respectively. This result points out that due to their limited capacity human learners
benefit from lower variability in the training sets, i.e. idealization.

The individual median reaction time in the training phase significantly differed across teaching con-
ditions, F (3, 596) = 10.66, p < 0.05. The training median reaction time for the Clump-Far con-
dition was the shortest (M=761 ms, SD=223) and differed significantly from all other conditions,
two-sample t tests, all p < 0.05. Other conditions did not differ significantly from each other.
The individual median reaction times in the test phase (M=767 ms, SD=187) did not differ across
teaching conditions, F (3, 596) = 0.95, p ≈ 0.42.

Taken together, our results suggest that the recommendations of the machine teacher for the low-
capacity GCM are indeed effective for human learners. Furthermore, the observed lower incon-
sistency in this condition suggests that machine teacher is performing idealization which aids by
reducing noise in the stochastic memory sampling process.

5 Discussion

A major aim of cognitive science is to understand human learning and to improve learning per-
formance. We devised an optimal teacher for human category learning, a fundamental problem in
cognitive science. Based on recent research we focused on GCM which models limited human ca-
pacity of exemplar retrieval during decision making. We developed the optimal teaching sets for
the low- and high-capacity variants of the GCM learner. By using a 1D category learning task, we
have shown that the optimal teaching set for the low-capacity GCM is clumped, symmetrical and
located far from the decision boundary, which is intuitively easy to learn. This provides a normative
basis (given capacity limits) for the idealization procedures that reduce saliency of ambiguous cases
[2, 3]. The optimal teaching set indeed proved effective for human learning.

Future work will pursue several extensions. One interesting topic not considered here is how the
order of training examples affects learning. One possibility is that the optimal teacher will recom-
mend easy examples earlier in training and then gradually progress to harder cases [2, 21]. Another
important extension is use of multi-dimensional stimuli.
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