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Abstract

Consider a teacher designing a good lecture for students, or a hacker drafting a
poisonous text input against Tay the chatterbot. Both cases can be formulated as
a task of constructing special training data, such that a known learning algorithm
taking the constructed data will arrive at a prespecified target model. This task is
known as optimal teaching, which has a wide range of applications in education,
psychology, computer security, program synthesis, etc.. Prior analysis of optimal
teaching focused exclusively on batch learners. However, a theoretical understand
of optimal teaching for online (sequential) learners is also important for many
applications. This paper presents the first study of optimal teaching for an online
learner, specifically the perceptron. We show how to construct the shortest input
sequence for a perceptron, and prove that the sequence has length one when the
teacher knows everything about the perceptron, or length three when the teacher
does not know the initial weight vector of the perceptron.

1 Introduction

In some applications, one has a target model in mind and knows the learning algorithm used by a
machine learner. One wants to construct a special training set to make the learner learn the target
model. One also wants the training set to be of minimal size. This constructive task is known as
optimal teaching [26, 17, 12, 24, 28, 7, 2, 3, 13, 18, 6, 5, 16, 4, 22, 9, 11]. The so-constructed training
set has applications in education [21, 27, 15], computer security [8, 20, 19, 1], interactive machine
learning [25, 10], program synthesis [14], and so on. However, prior work has restricted its attention
to batch learners. Many applications involve a sequential learner instead. In this paper, we present
the first theoretical study of optimal teaching to a sequential learner, namely online perceptron.

The (homogeneous) online perceptron is a classic online learning algorithm [23]. It is designed
for binary classification with the hypothesis class of homogeneous decision boundaries, namely,
H = {x 7→ sign(〈w,x〉),w ∈ Rd}, where x ∈ X = Rd, the input space, and sign(〈w,x〉) ∈
Y = {−1, 1}, the output space. Here, the sign function is defined as sign(z) = +1 if z > 0 and
−1 otherwise. The online perceptron updates the weight vector w, which is a vector normal to its
currently learned decision boundary. Therefore, two hypotheses are equivalent if and only if their
corresponding weight vectors satisfy w = cw′, for some c > 0. The exact algorithm is presented in
Algorithm 1:

Algorithm 1 Online Perceptron
1: Learning parameters: Initial weight vector w0 ∈ Rd, learning rate η > 0.
2: for t = 1 . . . do
3: receive xt

4: predict ŷt = sign(〈wt−1,xt〉)
5: receive yt
6: wt ← wt−1 + 1(yt〈xt,wt−1〉≤0)ηytxt
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Note that in this paper, we allow the perceptron learner to have a possibly non-zero initial parameter
w0, and arbitrary step size η. These two variables capture the notion of ‘background knowledge’ and
‘learning rate’ and fully specify the perceptron learner.

2 Optimal Teaching with Full Knowledge of the Perceptrons

In this section, we study the optimal teaching problem of online perceptron in the idealistic teaching
setting, where the teacher has full knowledge of the learner. In particular, the teacher knows that
the learner is an online perceptron with initial weight vector w0 and learning rate η. The teacher’s
goal is to teach a target decision boundary represented by an equivalence class of target parameters,
{cw∗ : c > 0} for some w∗ 6= 0, to the student. To achieve this teaching goal, the teacher is allowed
to construct a teaching sequence S using any training items that are consistent with the target decision
boundary. In other word, the teacher can use any x ∈ X to construct the training sequence, but the
corresponding label y has to satisfy y = sign(〈w∗,x〉). We will show that in this teaching setting,
the teacher is able to teach the exact target decision boundary to the learner, which gives rise to the
following defintion and theorem.

Definition 1. Let S be the space of finite training sequences. Define an online perceptron with initial
weight w0 and learning rate η as a function Aηw0

: S→ Rd, which takes a sequence of input S ∈ S
and produces a weight vector w ∈ Rd. Then, the Exact Teaching Dimension of Aηw0

with target
decision boundary {cw∗} is

TDexact(w∗,Aηw0
) = min

{
|S| : Aηw0

(S) = cw∗ for some c > 0
}
. (1)

Theorem 1. Given any target decision boundary {cw∗ : c > 0} for w∗ 6= 0, an online perceptron
Aηw0

with initial parameter w0 6∈ {cw∗} and learning rate η has an exact teaching dimension
TDexact(w∗,Aηw0

) = 1.

Proof. We prove the teaching dimension by exhibiting the teaching sequence in two separate cases.
Case 1: 〈w0,w

∗〉 > 0. In this case, (x1, y1) can be constructed as follows:

Choose any c ∈
(
〈w0,w

∗〉
‖w∗‖2

,
‖w0‖2

〈w0,w∗〉

]
, and y1 ∈ {−1,+1} , let x1 =

cw∗ −w0

ηy1
. (2)

Case 2: 〈w0,w
∗〉 ≤ 0. In this case, (x1, y1) can be constructed as follows:

Choose any c ∈ (0,∞), and y1 ∈ {−1,+1} , let x1 =
cw∗ −w0

ηy1
. (3)

We now verify that our constructions successfully teach the target decision boundary. In order for
our construction to be valid, it has to satisfy three conditions: it has to be consistent with the target
parameter w∗, it has to make the perceptron update its weight vector, and it has to update w0 to
exactly cw∗, for some c > 0. Written mathematically, (x1, y1) needs to satisfy the following:

y1 = sign(〈w∗,x1〉) (4)
y1〈w0,x1〉 ≤ 0 (5)
cw∗ = w0 + ηy1x1, for some c > 0 (6)

Notice that any (x1, y1) in the form x1 = cw∗−w0

ηy1
satisfies condition (6), so it remains to show that

our construction satisfy condition (4) and (5), and we again look at each of the two cases.
Case 1: 〈w0,w

∗〉 > 0. First notice that the interval
(
〈w0,w

∗〉
‖w∗‖2 ,

‖w0‖2
〈w0,w∗〉

]
will not be empty for any

w0 6= cw∗ for some c > 0, as a result of the Cauchy-Schwarz inequality:

‖w0‖2

〈w0,w∗〉
− 〈w0,w

∗〉
‖w∗‖2

=
‖w0‖2‖w∗‖2 − 〈w0,w

∗〉2

〈w0,w∗〉‖w∗‖2
> 0. (7)

Let (x1, y1) be constructed according to (2), then

sign(〈w∗,x1〉) = y1sign
(
c‖w∗‖2 − 〈w0,w

∗〉
η

)
= y1, as c >

〈w0,w
∗〉

‖w∗‖2
, (8)
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so condition (4) is satisfied, and now we show condition (5) is also satisfied:

y1〈w0,x1〉 =
c〈w0,w

∗〉 − ‖w0‖2

η
≤ 0, as 〈w0,w

∗〉 > 0 and c ≤ ‖w0‖2

〈w0,w∗〉
. (9)

Therefore, construction (2) is valid.
Case 2: 〈w0,w

∗〉 ≤ 0. Let (x1, y1) be constructed according to (3), similarly we have

sign(〈w∗,x1〉) = y1sign
(
c‖w∗‖2 − 〈w0,w

∗〉
η

)
= y1, as c > 0 and 〈w0,w

∗〉 ≤ 0 (10)

and

y1〈w0,x1〉 =
c〈w0,w

∗〉 − ‖w0‖2

η
≤ 0, as 〈w0,w

∗〉 ≤ 0 and c ≥ 0 (11)

Therefore, construction (3) is valid.
Moreover, notice that the optimality of our construction is obvious, as we have constructed a teaching
sequence of length 1, and clearly for w0 6∈ {cw∗}, an empty teaching sequence does not update the
initial weight vector w0, and so does not achieve the teaching goal. This completes the proof of
theorem 1.

3 Approximate Teaching with Unknown w0

In this section, we look into a different teaching setting, where the teacher does not have full
knowledge of the learner. In particular, the teacher knows that the student is a perceptron learner with
learning rate η but does not know the exact form of its initial weight vector w0. Instead, she knows
that there is an upper bound on the norm of the weight vector: ‖w0‖ ≤ b. To compensate for this
uncertainty, the perceptron reports back to the teacher whether it performs an update or not each time
she feeds the perceptron with a training item (xt, yt). Recall that the perceptron performs an update
if yt〈xt,wt−1〉 ≤ 0. Similar to the previous setting, the teacher can only use training labels that are
consistent with the target model. In this teaching setting,it is not clear that teaching the exact target
model is possible, so a natural question is how to define a realizable teaching goal. In this section,
we show that what we can achieve is an approximate teaching goal such that teaching is considered
successful if the learner arrives at a model close enough to the target model. First, we define our
teaching goal in this teaching setting by introducing a notion called teaching strategy.
Definition 2. Let S be the space of finite training sequences. Let Aη be an online perceptron with
unknown initial weight vector and known learning rate η. Define an ε-approximate teaching strategy
for a target decision boundary {cw∗} and learning algorithm Aη as a function tε : Rd → S, such
that for all w0 ∈ Rd,

1−
〈Aηw0

(tε(w0)),w
∗〉

‖Aηw0(tε(w0))‖‖w∗‖
≤ ε (12)

Here, the quantity 1− 〈Aηw0
(tε(w0)),w

∗〉
‖Aηw0

(tε(w0))‖‖w∗‖ is a measure of the angular (cosine) difference between the
taught parameter Aηw0

(tε(w0)) and the target parameter w∗. Now we define the notion of teaching
dimension in this teaching setting, and compute it for online perceptrons.
Definition 3. Let Tε be the space of ε-approximate teaching strategies for a target decision boundary
{cw∗} and an online perceptron Aη with unknown initial weight vector and known learning rate η.
Then, the ε-Approximate Teaching Dimension of Aη with target decision boundary {cw∗} is

TDε(w∗,Aη) = min
t∈Tε

max
w0∈Rd

|t(w0)| (13)

Theorem 2. For any ε > 0 and target decision boundary {cw∗ : c > 0 and w∗ 6= 0}, an online
perceptron Aη with learning rate η and an unknown initial parameter w0 6∈ {cw∗} with a known
upper bound ‖w0‖ ≤ b has an ε-approximate teaching dimension TDε(w∗,Aη) = 3.

Proof. We first demonstrate a teaching strategy that will generate a teaching sequence of size at
most 3. Without loss of generality, assume ‖w∗‖ = 1. First, pick any x1 ∈ Rd, s.t. ‖x1‖ = 2b

εη and
〈w∗,x1〉 = 0. Note that such x1 always exists and is not unique. Then, let x′1 = −x1. Recall that
sign(0) = −1. Correspondingly, we have y1 = sign(〈w∗,x1〉) = −1 and y′1 = sign(〈w∗,x′1〉) =
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−1. Since y1〈w0,x1〉 + y′1〈w0,x
′
1〉 = 0, at least one of the two terms is less than or equal to 0,

implying at least one of them will make the perceptron update.
With (x1, y1) and (x′1, y

′
1) defined, the teaching strategy generates a teaching sequence as follows:

At iteration 1, feed (x1, y1) to the learner.
Case 1: If (x1, y1) triggers an update, then we know 〈x1,w0〉 ≥ 0, and w1 = w0 + ηy1x1 =
w0 − ηx1.
At iteration 2, let x2 = 2b

εηw
∗ + x1 and y2 = 1. Feed (x2, y2) to the learner. Note that (x2, y2)

is consistent with w∗, as sign(〈x2,w
∗〉) = sign

(
2b
εη‖w

∗‖2 + 〈x1,w
∗〉
)
= sign

(
2b
εη‖w

∗‖2
)
= y2.

We also have

y2 〈x2,w1〉 =
〈
2b

εη
w∗ + x1,w0 − ηx1

〉
=

〈
2b

εη
w∗ + x1,w0

〉
− η‖x1‖2 (14)

≤
(
2b

εη
‖w∗‖+ ‖x1‖

)
‖w0‖ − η‖x1‖2 ≤

4b2

εη
− 4b2

ε2η
< 0, for ε < 1 (15)

in which (15) is a result of triangle inequality and Cauchy-Schwarz inequality. Therefore, (x2, y2)
also triggers an update. As a result, w2 = w1 + ηy2x2 = w0 +

2b
ε w
∗, and

〈w2,w
∗〉

‖w2‖‖w∗‖
=

2b
ε ‖w

∗‖2 + 〈w0,w
∗〉

‖w2‖‖w∗‖
≥

2b
ε − b
2b
ε + b

= 1− 2b

2b+ bε
ε ≥ 1− ε. (16)

Therefore, S = (x1, y1), (x2, y2) achieves the teaching goal.
Case 2: If (x1, y1) does not trigger an update, then let x2 = x′1 and y2 = y′1, and x3 = 2b

εηw
∗ + x2

and y3 = 1. Arguments similar to those above show that x2 and x3 both trigger an update, and w3

satisfies the ε constraint. In this case, S = (x1, y1), (x2, y2), (x3, y3) achieves the teaching goal.

Now we are left to show that no teaching strategy can construct a teaching sequence of size two for
all w0, and we show this by contradiction. Suppose that there exists such a teaching strategy, i.e.
there exists (x1, y1), (x2, y2) and (x′2, y

′
2), such that S1 = (x1, y1), (x

′
2, y
′
2) achieves the teaching

goal if the perceptron updates on (x1, y1), and S2 = (x1, y1), (x2, y2) achieves the teaching goal if
the perceptron does not update on (x1, y1). In particular, consider S2 in two possible cases.
If S2 satisfies x2 6= −ax1 for any a > 0. If y2 = y1, in the case that w0 = y1(

x1

‖x1‖ +
x2

‖x2‖ ), we
have by Cauchy-Schwarz inequality,

y1〈x1,w0〉 = ‖x1‖
(
‖x1‖2

‖x1‖2
+
〈x1,x2〉
‖x1‖‖x2‖

)
> 0, implying (17)

y2〈x2,w1〉 = y1〈x2,w0〉 = ‖x2‖
(
‖x2‖2

‖x2‖2
+
〈x1,x2〉
‖x1‖‖x2‖

)
> 0. (18)

If y2 = −y1, in the case w0 = y1

(
x1

‖x1‖ −
x2

‖x2‖

)
, similar calculations show that y1〈x1,w0〉 > 0

and y2〈x2,w1〉 > 0. Therefore, if x2 6= −ax1 for any a > 0, S2 does not guarantee to trigger an
update for all w0, so S2 fails to teach the target model. If instead x2 = −ax1, for some a > 0, still
we will have y2〈x2,w2〉 = y1〈x1,w0〉 > 0, except if x1 and x2 both lie on the decision boundary, in
which case y2 = y1 = −1. Then, suppose 〈x1,w

∗〉 = 0 and x2 = −ax1, for some a > 0, consider
the case 〈w0,w

∗〉 < 0, since x1 does not trigger the update and x2 triggers the update, w1 = w0,
and w2 = w1 + ηy2x2, yet still we have 〈w2,w

∗〉 = 〈w0,w
∗〉 < 0, as 〈x2,w

∗〉 = 0, so S2 fails to
teach the target model. Therefore, in either, S2 fails to achieve the teaching goal for all w0.

4 Discussions

There are many interesting avenues to continue exploring. For example, our construction in the
unknown w0 setting is somewhat extreme, in the sense that the norms of the input vectors in our
teaching sequences grow dramatically as ε decreases. This naturally gives rise to the question:
How do constraints on the (e.g. norm of the) training items affect teaching dimension? Another
important question is how do teachers handle other uncertainties, e.g. an unknown learning rate η.
The definition of teaching strategy already captures the adaptive nature of optimal teaching in the
situation of uncertainty. The teacher can only generate a teaching sequence ‘on-site’ that adapts to
the student’s feedbacks. Last but not least, one would also want to extend optimal teaching problem
to other sequential learners such as stochastic gradient descent (SGD).
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