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Category learning is the inference of category structures from a set of stimuli each labeled
as belonging to one of the categories. Human category learning is of central importance to
many ideas in psychology. One of the most basic traits of human cognition is the ability
to group objects in the world into cohesive categories. Despite the apparent simplicity of
this problem, people display quite complex behaviors in categorization settings. Their high
degree of insightfulness and intelligence has been verified both anecdotally and through
laboratory experiments. Some features of human-level categorization are: selectively
attending to salient features, generalizing categories to novel objects, forming new cate-
gories to explain surprising data, generating hierarchical category structures, estimating
confidence by deciding how loosely to generalize, and transferring knowledge between
tasks about what types of objects tend to be categorized together.

Classical models of human category learning have not been able to explain all of these phe-
nomena. The hierarchical Dirichlet process (HDP) is a framework that can be used to specify
rich models of human categorization, both subsuming many existing models and containing
promising new ones as well.

Introduction

Psychological models of categorization fall into three general categories:
• Prototype models (Reed, 1972) represent a category by a single object, the prototype. The

strength of a new stimulus’ membership in the category is measured by its similarity to
the prototype.

• Exemplar models (Medin & Schaffer, 1978) represent a category by memorizing every
instance of it, the exemplars. The strength of a new stimulus’ membership in the category
is measured by its average similarity to the exemplars.

• Intermediate models (Anderson, 1990; Rosseel 2002; Vanpaemel et al., 2005) represent a
category by clustering its instances and computing the strength of a new stimulus’ mem-
bership in the category by its average similarity to the cluster centers. This is equivalent
to a prototype model when only a single cluster is used, and to an exemplar model when
every object is in its own cluster. The most interesting cases are between these extremes.
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In theory, intermediate models must consider all partitions of a category’s instances. In
previous work, this limitation has been skirted by using suboptimal, greedy clustering algo-
rithms and/or assuming that the number of clusters is fixed ahead of time. Due to efficient
sampling algorithms such as Markov chain Monte Carlo (MCMC), more sophisticated mod-
els based on Bayesian inference, such as the HDP, can now be tested.

Representing Categories

Dirichlet process mixtures models (DPMMs) (Antoniak, 1974) probabilistically partition the
objects in a category into clusters according to the prior probability distribution

P (zN ) =
αK∏N−1

i=0 [α + i]

K∏
k=1

(Mk − 1)!,

whereN is the total number of objects,K is the number of clusters,Mk is the size of cluster k,
and α is a parameter that governs how much the model favors a few large clusters or many
small clusters. The DPMM has the flexibility to move between prototype- and exemplar-
style category representations as warranted by the data. The DPMM is equivalent to the
Rational Model of Categorization introduced by Anderson (1990). We use a Gibbs sampling
algorithm to cluster a category’s objects rather than the greedy algorithm used by Anderson.

Dirichlet Process Mixture Models

Smith and Minda (1998) showed that neither prototype nor exemplar models are strictly
better at modeling human categorization, with people transitioning between these two styles
during a single experiment. The following categories were learned by human subjects (note
the distractor stimuli at the ends of the lists):

Stimuli from Smith & Minda, 1998, Experiment 2-NLS
A 000000, 100000, 010000, 001000, 000010, 000001, 111101
B 111111, 011111, 101111, 110111, 111011, 111110, 000100

The transition from prototype-style learning to exemplar-style learning is well-replicated by
modeling each category with an independent DPMM (Griffiths, Canini, et al., 2007). The
DPMM is the only model of the three that explains the crossover of the distractor stimuli.
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The Prototype-Exemplar Transition

Hierarchical Dirichlet processes (HDPs; Teh, Jordan, et al., 2004) allow categories to pool
their objects together into shared clusters, thereby sharing statistical strength. Through var-
ious settings of the HDP’s hyperparameters α (which controls how large clusters within a
category tend to be) and γ (which controls how likely categories are to share clusters), a
number of models can be derived, including the prototype, exemplar, and DPMM models
(Griffiths, Sanborn, et al. 2007).

α→0 α∈(0,∞) α→∞

γ∈(0,∞)

Cluster-Sharing HDP

γ→∞
Prototype Model Dirichlet Process Mixture Model Exemplar Model

Most interestingly, the “cluster-sharing” HDP model promises to exhibit previously unex-
plained traits of human learning.

Hierarchical Dirichlet Processes

During the course of category learning, people inevitably gain information about what types
of objects tend to be categorized together. This knowledge influences future episodes of
category learning by creating assumptions about the way objects will be grouped together.

Striped Objects Cats

While learning the category of striped objects, the striped cats form a natural cluster. This
induces a prior belief that the striped cats will tend to be members or non-members of other
categories together, thereby reducing the time it takes to learn the category of all cats.

Transfer Learning

We are conducting experiments to quantify the transfer learning effect described above. In
both experiments, subjects learn to categorize 16 stimuli in three different ways. The last
task is either consistent or inconsistent with the first two, as depicted below.
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We counterbalance the dimensions used for Train 1 and Train 2, so that the same Test condi-
tion can be either consistent or inconsistent. Preliminary results are shown below.
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Interestingly, the interference between the Train 1 and Train 2 sessions seems greater than
between the Training and Test sessions. Since many subjects became fatigued part-way
through Experiment 1, Experiment 2 is designed to be easier to complete.

Train 1 Train 2 Consistent Test Inconsistent Test
(shape) (color) (shape XOR color) (size XOR fill)
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Preliminary results are shown below.
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