

# Reward Bonuses for Efficient, Effective Exploration

(or, KWIK Learners at Play)

Michael Littman Rutgers University

Computer Science Rutgers University Center for Cognitive Science Rutgers Laboratory for Real-Life Reinforcement Learning













#### PAC Learning

- Classic machine-learning paradigm is PAC (probably approximately correct).
- A learner is efficient in the PAC model if it can make accurate predictions after seeing a small set of labeled examples. Critical assumption: Examples are drawn iid.
- Commits to a single hypothesis based on the statistics of the training examples.
- A vicious adversary can make a PAC learner get very low reward.





# KWIK Learning

- We devised a different model, which we call KWIK learning (Knows What It Knows).
- A KWIK learner cannot make miscategorization errors, but it can choose not to label some examples.
- However, there is a bound on the number of times the learner can opt out. So, it needs to glean something substantial from each example.
- No training/testing distinction.





#### **Experience-Efficient Learning**

- Decision maker interacts with the world.
- We call an action a "mistake" if it is not a step of a nearly optimal (∈-optimal) behavior.
- With high probability (1-δ), the number of mistakes should be small compared to the complexity of the environment.
- Such an approach is "experience efficient".











# **Final Thoughts**



Many hypothesis classes KWIK learnable:

- coin flip probability
- Dynamic Bayes net probabilities given graph
- degree k Dynamic Bayes net
- k Meteorologist problem
- *k*-CNF
- k-depth decision tree
- unions of KWIK-learnable classes



# Wrap Up



- Goal: Algorithms that learn to behave.
- To provide learning algorithms with guarantees of near-optimality, devised a new learning setting, KWIK.
- The learner can influence exploration/ exploitation in a decision maker by adding artificial rewards to unknown states.

#### **Extended Fanciful Example**

We own a bar. There's a collection of n=5 regular customers. One is belligerent (not sure who). One is a peacemaker (not sure who). Each night, we see who comes to the bar. A fight breaks out if the belligerent one is there and the peacemaker is not.

After we see who has arrived, we can:

- Pay \$100 for a <u>bouncer</u> who will stop a fight as soon as it breaks out.
- Pay \$200 to repair the bar if a fight breaks out and <u>no bouncer</u> was hired.
- Pay \$50 in opportunity cost and <u>expel</u> the whole group before they even enter the bar.



|            | nteraction  |             |
|------------|-------------|-------------|
| • [0,2,3]  | • [1,2,4]   | • [0,2,4]   |
| – no fight | - no fight  | - no fight  |
| • [1,3]    | • [0,4]     | • [0,1]     |
| – no fight | - fight     | - fight     |
| • [3]      | • [0,2,3,4] | • [1,2,3,4] |
| – no fight | - no fight  | - no fight  |
| • [0,3,4]  | • [1,3,4]   | • [1,4]     |
| – fight    | - no fight  | - no fight  |

### KWIK Bound



- Will pay bouncer ("don't know") no more than n(n-1) times. Might overpay by \$100.
- Every other trial is optimal!
- Same overpay cost as active learning, in spite of the lack of control over the examples.
- Better than mistake bound or PAC approaches.







# Why So Hard?



- Given the data, you can estimate the probability the output is 1 given any of the input bits. Even the wrong ones.
- Which should we believe?
- One with lowest prediction error.
- If two bits are correlated, prediction error will be similar... Need to notice when they









#### • win the mystery game...

Demo

#### Comparison



- Taxi problem (Dietterich)
- Taxi: How long until optimal behavior?

| Exploration style    | Algorithm     | # of steps |
|----------------------|---------------|------------|
| epsilon greedy       | Q-learning    | 47157      |
| count on states      | Flat Rmax     | 4151       |
| count on features    | Factored Rmax | 1839       |
| count on interaction | Objects       | 143        |
| whatever people do   | People        | 50         |





#### PAC-MDP



- Can exploit the structure to learn fast!
  - Knows nothing matters: Rmax.
  - Know some feature matters: RAM-Rmax.
  - Knows which feature matters: RAM-Rmax.
  - Know the wall: No learning needed.
- KWIK learning underlies fast learners.
- Enthymematic!
  - Where do these assertions come from?
  - What if they hold only partially?







### Priors Change Learning Alg



- Gray always wall: No learning
- Each gray independent: Rmax
- Grays always like each other: RAM-Rmax
- Sometimes independent/not: New alg.





#### Conclusion



- Humans don't solve NP hard problems.
- Observations of impressive behavior imply we've framed the problem wrong.
- Happily "stealing" from cognitive science to create better learning algorithms.