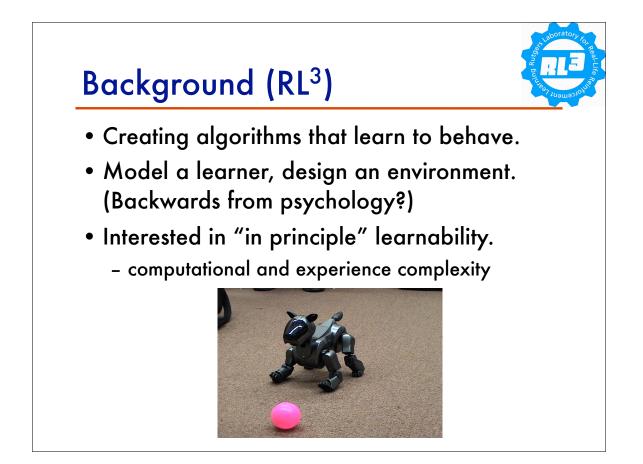


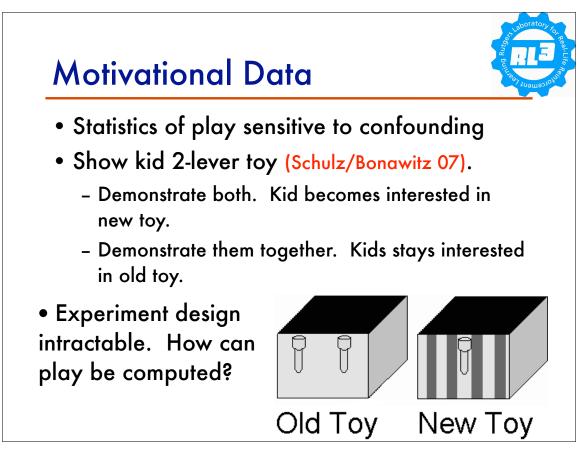
Reward Bonuses for Efficient, Effective Exploration

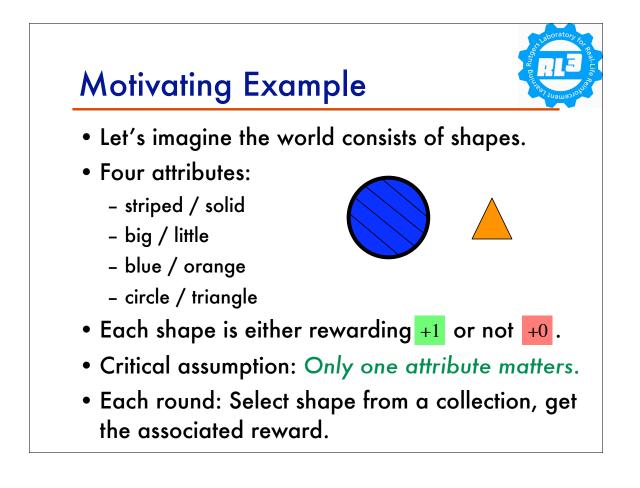
(or, KWIK Learners at Play)

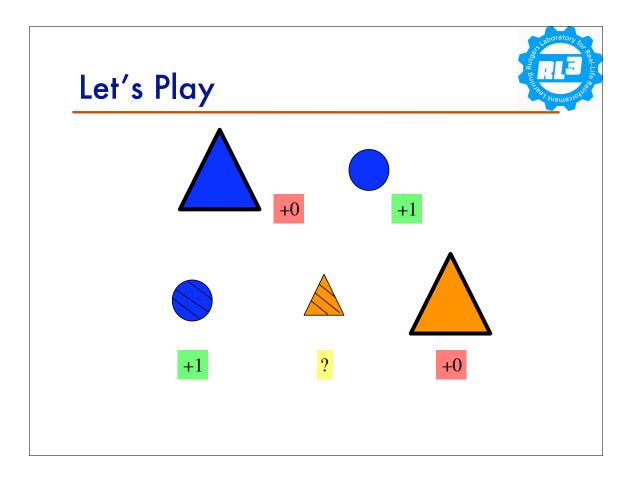
Michael Littman Rutgers University

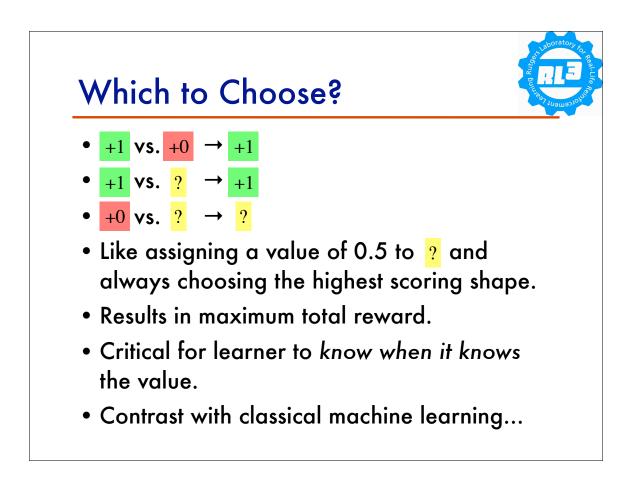
Computer Science Rutgers University Center for Cognitive Science Rutgers Laboratory for Real-Life Reinforcement Learning





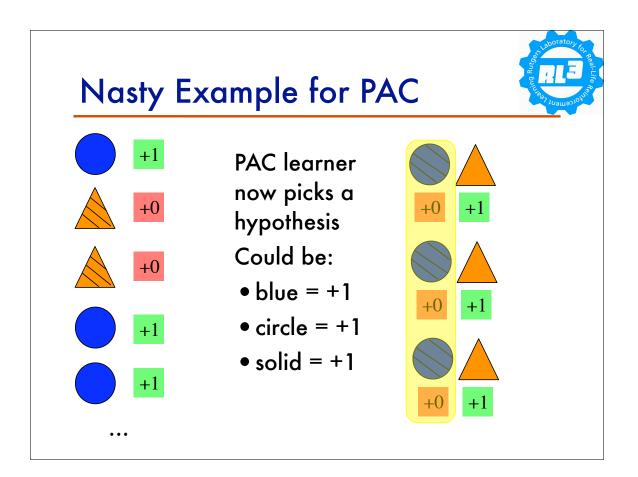






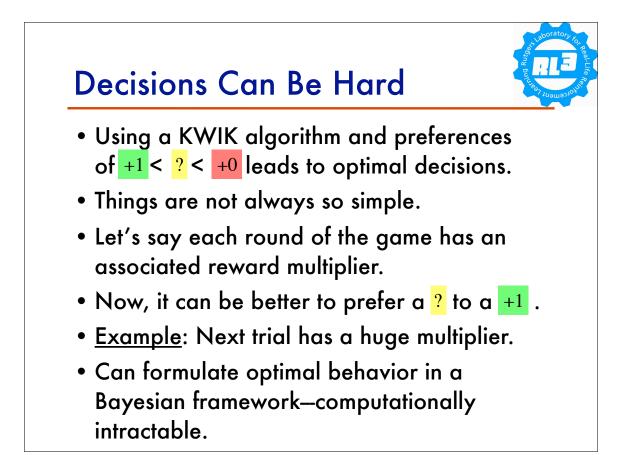
PAC Learning

- Classic machine-learning paradigm is PAC (probably approximately correct).
- A learner is efficient in the PAC model if it can make accurate predictions after seeing a small set of labeled examples. Critical assumption: Examples are drawn iid.
- Commits to a single hypothesis based on the statistics of the training examples.
- A vicious adversary can make a PAC learner get very low reward.



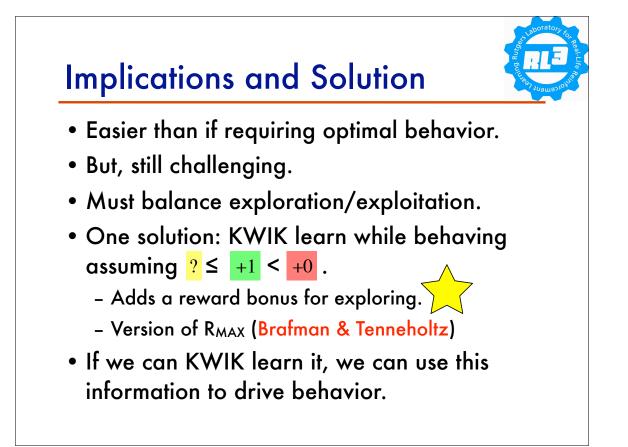
KWIK Learning

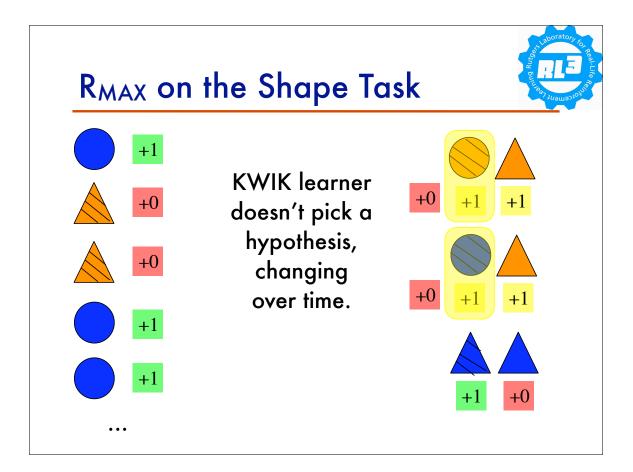
- We devised a different model, which we call KWIK learning (Knows What It Knows).
- A KWIK learner cannot make miscategorization errors, but it can choose not to label some examples.
- However, there is a bound on the number of times the learner can opt out. So, it needs to glean something substantial from each example.
- No training/testing distinction.

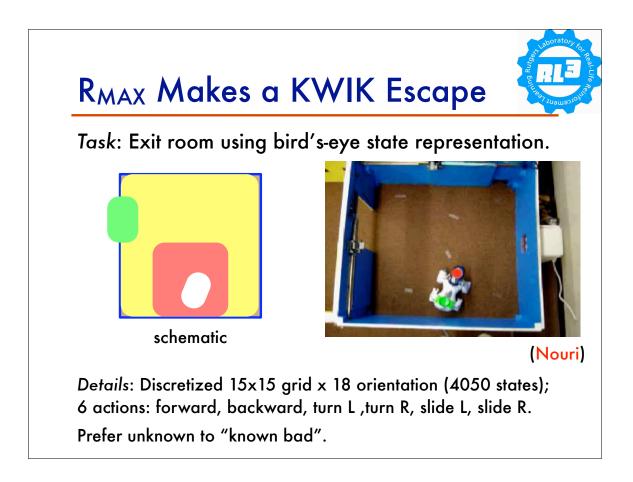


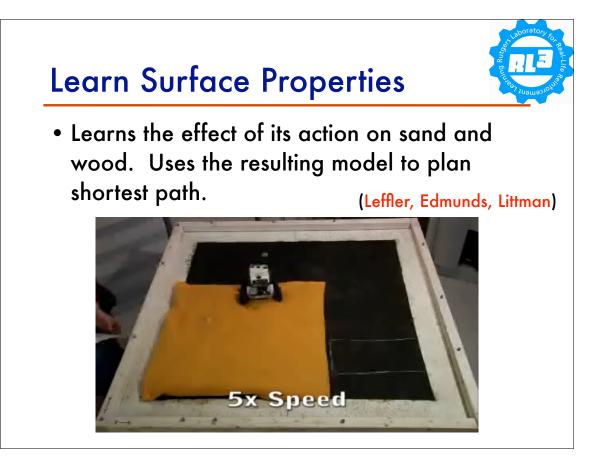
Experience-Efficient Learning

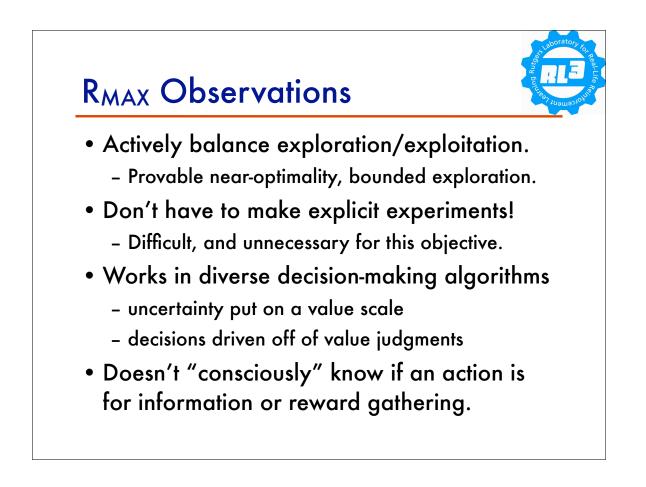
- Decision maker interacts with the world.
- We call an action a "mistake" if it is not a step of a nearly optimal (∈-optimal) behavior.
- With high probability (1-δ), the number of mistakes should be small compared to the complexity of the environment.
- Such an approach is "experience efficient".







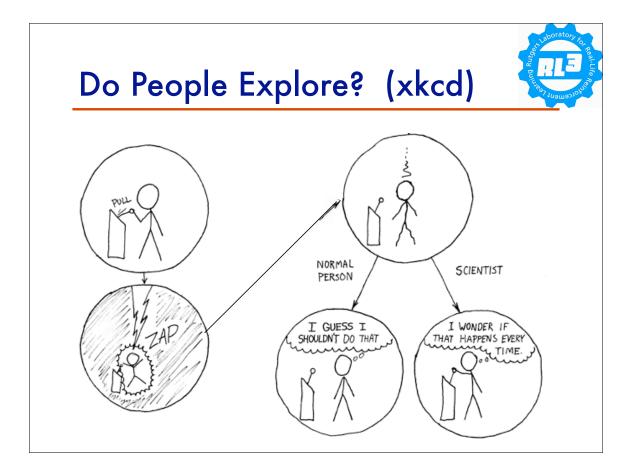




Final Thoughts

Many hypothesis classes KWIK learnable:

- coin flip probability
- Dynamic Bayes net probabilities given graph
- degree k Dynamic Bayes net
- k Meteorologist problem
- *k*-CNF
- k-depth decision tree
- unions of KWIK-learnable classes



Wrap Up

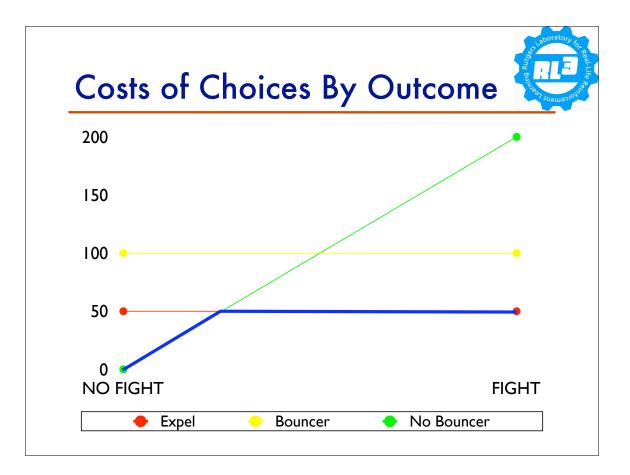
- Goal: Algorithms that learn to behave.
- To provide learning algorithms with guarantees of near-optimality, devised a new learning setting, KWIK.
- The learner can influence exploration/ exploitation in a decision maker by adding artificial rewards to unknown states.

Extended Fanciful Example

We own a bar. There's a collection of n=5 regular customers. One is belligerent (not sure who). One is a peacemaker (not sure who). Each night, we see who comes to the bar. A fight breaks out if the belligerent one is there and the peacemaker is not.

After we see who has arrived, we can:

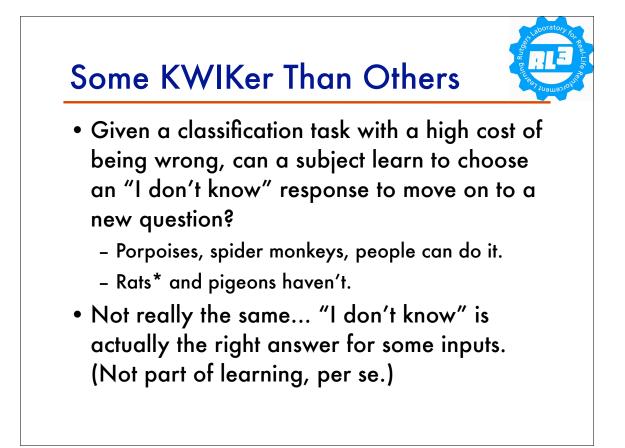
- Pay \$100 for a <u>bouncer</u> who will stop a fight as soon as it breaks out.
- Pay \$200 to repair the bar if a fight breaks out and <u>no bouncer</u> was hired.
- Pay \$50 in opportunity cost and <u>expel</u> the whole group before they even enter the bar.

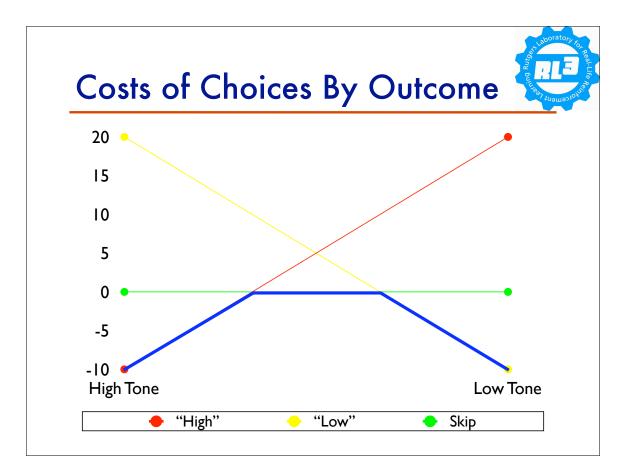


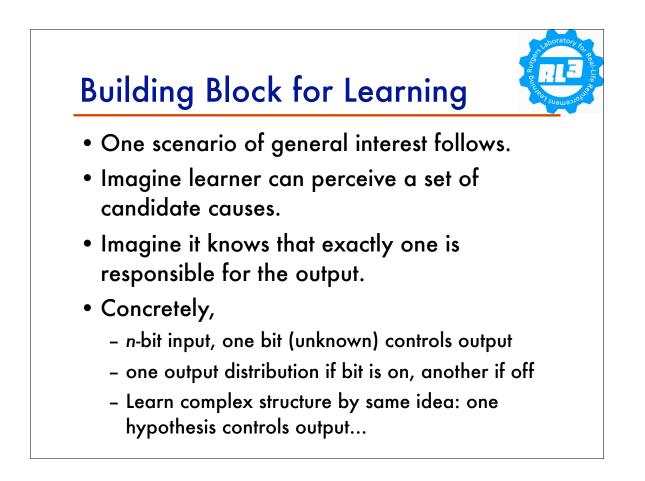
	nteraction	
• [0,2,3]	• [1,2,4]	• [0,2,4]
– no fight	- no fight	- no fight
• [1,3]	• [0,4]	• [0,1]
– no fight	- fight	- fight
• [3]	• [0,2,3,4]	• [1,2,3,4]
– no fight	- no fight	- no fight
• [0,3,4]	• [1,3,4]	• [1,4]
– fight	- no fight	- no fight

KWIK Bound

- Will pay bouncer ("don't know") no more than n(n-1) times. Might overpay by \$100.
- Every other trial is optimal!
- Same overpay cost as active learning, in spite of the lack of control over the examples.
- Better than mistake bound or PAC approaches.

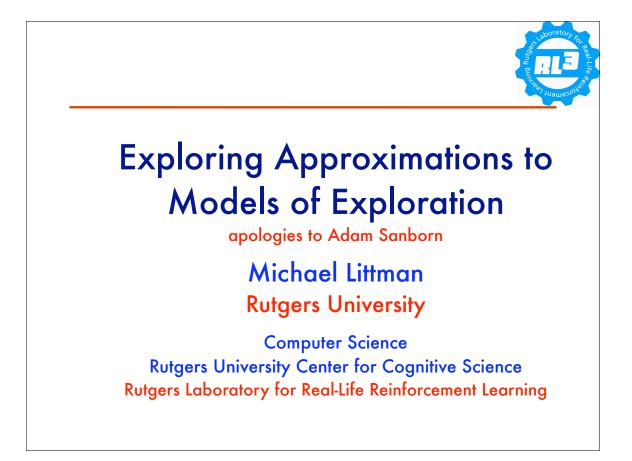


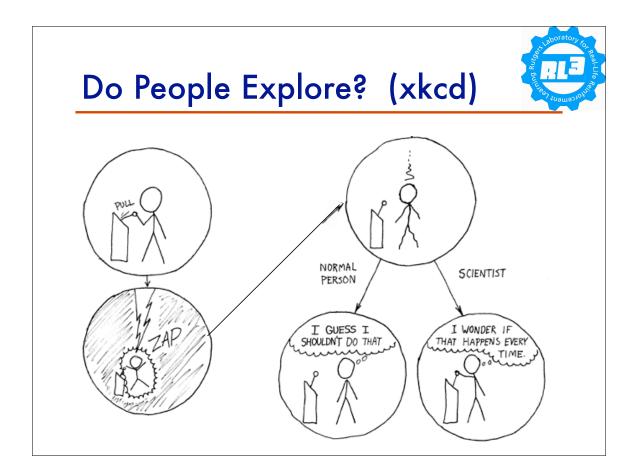


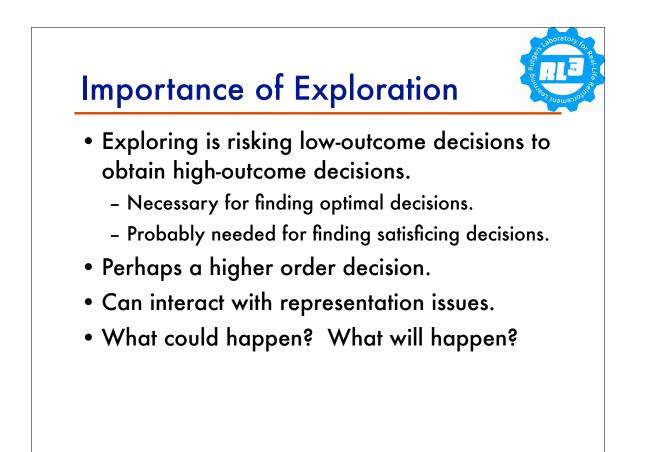


Why So Hard?

- Given the data, you can estimate the probability the output is 1 given any of the input bits. Even the wrong ones.
- Which should we believe?
- One with lowest prediction error.
- If two bits are correlated, prediction error will be similar... Need to notice when they







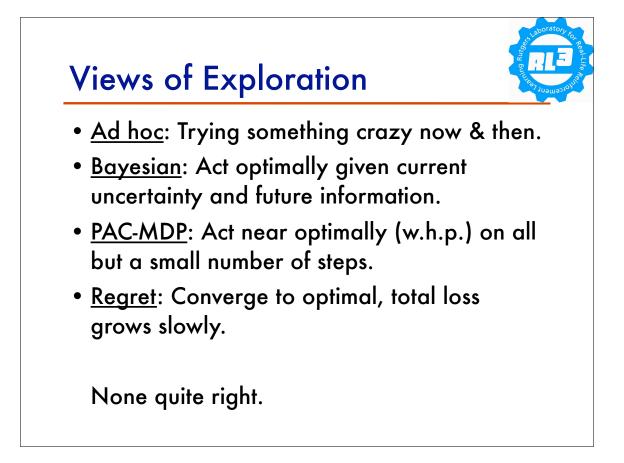
• win the mystery game...

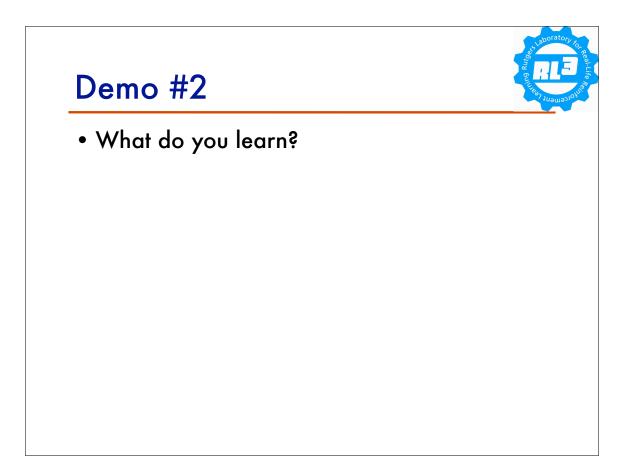
Demo

Comparison

- Taxi problem (Dietterich)
- Taxi: How long until optimal behavior?

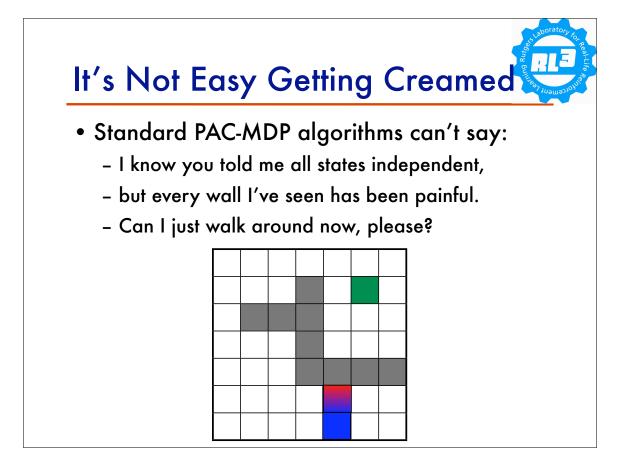
Exploration style	Algorithm	# of steps
epsilon greedy	Q-learning	47157
count on states	Flat Rmax	4151
count on features	Factored Rmax	1839
count on interaction	Objects	143
whatever people do	People	50

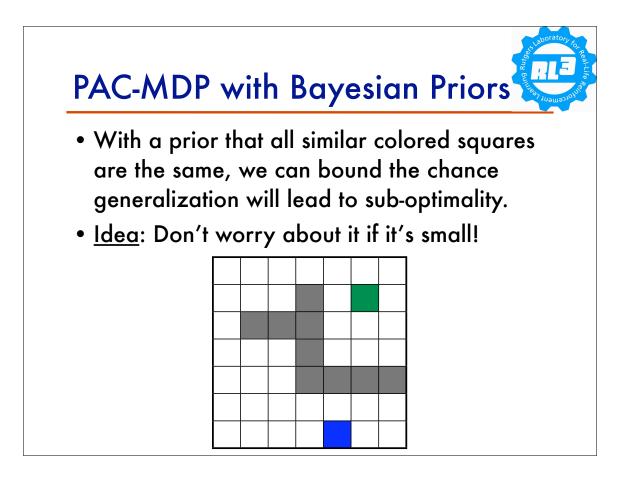


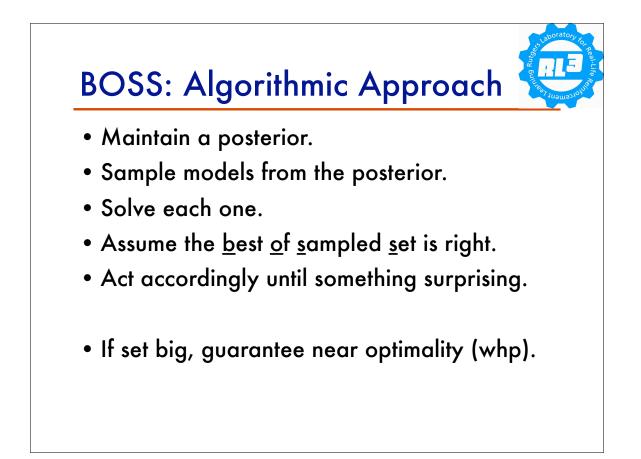


PAC-MDP

- Can exploit the structure to learn fast!
 - Knows nothing matters: Rmax.
 - Know some feature matters: RAM-Rmax.
 - Knows which feature matters: RAM-Rmax.
 - Know the wall: No learning needed.
- KWIK learning underlies fast learners.
- Enthymematic!
 - Where do these assertions come from?
 - What if they hold only partially?

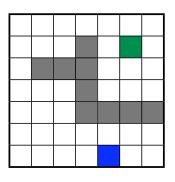


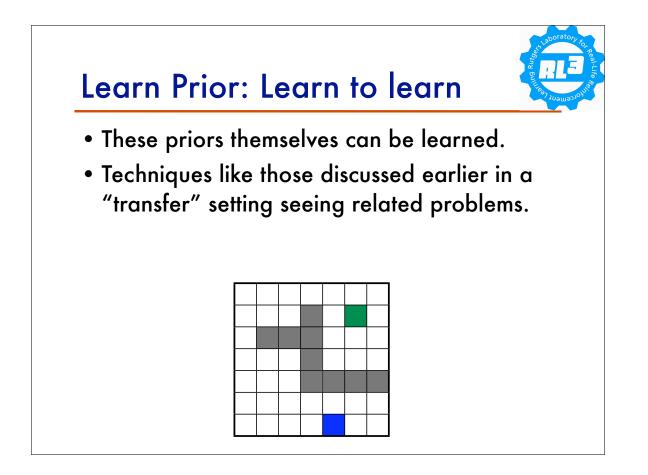




Priors Change Learning Alg

- Gray always wall: No learning
- Each gray independent: Rmax
- Grays always like each other: RAM-Rmax
- Sometimes independent/not: New alg.





Conclusion

- Humans don't solve NP hard problems.
- Observations of impressive behavior imply we've framed the problem wrong.
- Happily "stealing" from cognitive science to create better learning algorithms.