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Background (RL3)

• Creating algorithms that learn to behave.

• Model an environment, design a learner.  
(Backwards from psychology?)

• Interested in “in principle” learnability.
– computational and experience complexity

a learner, design an environment.



Motivational Data

• Statistics of play sensitive to confounding 

• Show kid 2-lever toy (Schulz/Bonawitz 07).  

– Demonstrate both.  Kid becomes interested in 
new toy.

– Demonstrate them together.  Kids stays interested 
in old toy.

• Experiment design 
intractable.  How can 
play be computed?

Motivating Example

• Let’s imagine the world consists of shapes.

• Four attributes:

– striped / solid

– big / little

– blue / orange

– circle / triangle

• Each shape is either rewarding      or not      .

• Critical assumption: Only one attribute matters.

• Each round: Select shape from a collection, get 
the associated reward.
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Let’s Play

+1+0

+0+1 ?

Which to Choose?

•      vs.      !

•      vs.      !

•      vs.      !

• Like assigning a value of 0.5 to     and 
always choosing the highest scoring shape.

• Results in maximum total reward.

• Critical for learner to know when it knows 
the value.  

• Contrast with classical machine learning...
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PAC Learning

• Classic machine-learning paradigm is PAC 
(probably approximately correct).

• A learner is efficient in the PAC model if it 
can make accurate predictions after seeing a 
small set of labeled examples.  Critical 
assumption: Examples are drawn iid.

• Commits to a single hypothesis based on the 
statistics of the training examples.  

• A vicious adversary can make a PAC learner 
get very low reward.

Nasty Example for PAC

+1

+0

+0 +1+0

+1

+1

...

PAC learner 
now picks a 
hypothesis

Could be:

•blue = +1

•circle = +1

•solid = +1
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KWIK Learning

• We devised a different model, which we call 
KWIK learning (Knows What It Knows).

• A KWIK learner cannot make 
miscategorization errors, but it can choose 
not to label some examples.

• However, there is a bound on the number of 
times the learner can opt out.  So, it needs 
to glean something substantial from each 
example.

• No training/testing distinction.

Decisions Can Be Hard

• Using a KWIK algorithm and preferences  
of     <    <      leads to optimal decisions.

• Things are not always so simple.

• Let’s say each round of the game has an 
associated reward multiplier.

• Now, it can be better to prefer a    to a      .

• Example: Next trial has a huge multiplier.

• Can formulate optimal behavior in a 
Bayesian framework---computationally 
intractable.

+1 +0?
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Experience-Efficient Learning

• Decision maker interacts with the world.

• We call an action a “mistake” if it is not a 
step of a nearly optimal ("-optimal) 
behavior.

• With high probability (1!#), the number of 
mistakes should be small compared to the 
complexity of the environment.

• Such an approach is “experience efficient”.

Implications and Solution

• Easier than if requiring optimal behavior.

• But, still challenging.

• Must balance exploration/exploitation.

• One solution: KWIK learn while behaving 
assuming    "       <      .
– Adds a reward bonus for exploring.

– Version of RMAX (Brafman & Tenneholtz)

• If we can KWIK learn it, we can use this 
information to drive behavior.

+1 +0?



RMAX on the Shape Task

+1

+0

+0

+1

+1

...

KWIK learner 
doesn’t pick a 

hypothesis, 
changing 
over time.
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Task: Exit room using bird’s-eye state representation.

Details: Discretized 15x15 grid x 18 orientation (4050 states); 
6 actions: forward, backward, turn L ,turn R, slide L, slide R.

Prefer unknown to “known bad”.

RMAX Makes a KWIK Escape

schematic
(Nouri)



Learn Surface Properties

• Learns the effect of its action on sand and 
wood.  Uses the resulting model to plan 
shortest path. (Leffler, Edmunds, Littman)

RMAX Observations

• Actively balance exploration/exploitation.
– Provable near-optimality, bounded exploration.

• Don’t have to make explicit experiments!
– Difficult, and unnecessary for this objective.

• Works in diverse decision-making algorithms

– uncertainty put on a value scale

– decisions driven off of value judgments

• Doesn’t “consciously” know if an action is 
for information or reward gathering.



Final Thoughts

Many hypothesis classes KWIK learnable:

• coin flip probability

• Dynamic Bayes net probabilities given graph

• degree k Dynamic Bayes net

• k Meteorologist problem

• k-CNF

• k-depth decision tree

• unions of KWIK-learnable classes

Do People Explore?  (xkcd)



Wrap Up

• Goal: Algorithms that learn to behave.

• To provide learning algorithms with 
guarantees of near-optimality, devised a 
new learning setting, KWIK.

• The learner can influence exploration/
exploitation in a decision maker by adding 
artificial rewards to unknown states.

Extended Fanciful Example

We own a bar.  There’s a collection of n=5 regular 
customers.  One is belligerent (not sure who).  One is a 
peacemaker (not sure who).  Each night, we see who 
comes to the bar.  A fight breaks out if the belligerent 
one is there and the peacemaker is not.

  After we see who has arrived, we can:

• Pay $100 for a bouncer who will stop a fight as soon 
as it breaks out.

• Pay $200 to repair the bar if a fight breaks out and 
no bouncer was hired.

• Pay $50 in opportunity cost and expel the whole 
group before they even enter the bar.



Costs of Choices By Outcome
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Example Interaction

• [0,2,3]
– no fight

• [1,3]
– no fight

• [3]

– no fight

• [0,3,4]

– fight

• [2,3]
– no fight

• [1,2,4] 

- no fight

• [0,4]

- fight

• [0,2,3,4]

- no fight

• [1,3,4]

- no fight

• [0,2,4] 

- no fight

• [0,1]

- fight

• [1,2,3,4]

- no fight

• [1,4]

- no fight



KWIK Bound

• Will pay bouncer (“don’t know”) no more 
than n(n-1) times.  Might overpay by $100.

• Every other trial is optimal!

• Same overpay cost as active learning, in 
spite of the lack of control over the 
examples.

• Better than mistake bound or PAC 
approaches.

Some KWIKer Than Others

• Given a classification task with a high cost of 
being wrong, can a subject learn to choose 
an “I don’t know” response to move on to a 
new question?
– Porpoises, spider monkeys, people can do it.

– Rats* and pigeons haven’t.

• Not really the same... “I don’t know” is 
actually the right answer for some inputs.  
(Not part of learning, per se.)



Costs of Choices By Outcome
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Building Block for Learning

• One scenario of general interest follows.

• Imagine learner can perceive a set of 
candidate causes.

• Imagine it knows that exactly one is 
responsible for the output.

• Concretely, 
– n-bit input, one bit (unknown) controls output

– one output distribution if bit is on, another if off

– Learn complex structure by same idea: one 
hypothesis controls output...



Why So Hard?

• Given the data, you can estimate the 
probability the output is 1 given any of the 
input bits.  Even the wrong ones.

• Which should we believe?

• One with lowest prediction error.

• If two bits are correlated, prediction error 
will be similar...  Need to notice when they

Exploring Approximations to 
Models of Exploration

apologies to Adam Sanborn
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Do People Explore?  (xkcd)

Importance of Exploration

• Exploring is risking low-outcome decisions to 
obtain high-outcome decisions.
– Necessary for finding optimal decisions.

– Probably needed for finding satisficing decisions.

• Perhaps a higher order decision.

• Can interact with representation issues.

• What could happen?  What will happen?



Demo

• win the mystery game...

Comparison

• Taxi problem (Dietterich)

• Taxi: How long until optimal behavior?

Exploration style Algorithm # of steps

epsilon greedy Q-learning 47157

count on states Flat Rmax 4151

count on features Factored Rmax 1839

count on interaction Objects 143

whatever people do People 50



Views of Exploration

• Ad hoc: Trying something crazy now & then.

• Bayesian: Act optimally given current 
uncertainty and future information.

• PAC-MDP: Act near optimally (w.h.p.) on all 
but a small number of steps.

• Regret: Converge to optimal, total loss 
grows slowly.

None quite right.

Demo #2

• What do you learn?



PAC-MDP

• Can exploit the structure to learn fast!
– Knows nothing matters: Rmax.

– Know some feature matters: RAM-Rmax.

– Knows which feature matters: RAM-Rmax.

– Know the wall: No learning needed.

• KWIK learning underlies fast learners.

• Enthymematic!

– Where do these assertions come from?

– What if they hold only partially?

It’s Not Easy Getting Creamed

• Standard PAC-MDP algorithms can’t say: 
– I know you told me all states independent,

– but every wall I’ve seen has been painful.

– Can I just walk around now, please?



PAC-MDP with Bayesian Priors

• With a prior that all similar colored squares 
are the same, we can bound the chance 
generalization will lead to sub-optimality.

• Idea: Don’t worry about it if it’s small!

BOSS: Algorithmic Approach

• Maintain a posterior.

• Sample models from the posterior.

• Solve each one.

• Assume the best of sampled set is right.

• Act accordingly until something surprising.

• If set big, guarantee near optimality (whp).



Priors Change Learning Alg

• Gray always wall: No learning

• Each gray independent: Rmax

• Grays always like each other: RAM-Rmax

• Sometimes independent/not: New alg.

Learn Prior: Learn to learn

• These priors themselves can be learned.

• Techniques like those discussed earlier in a 
“transfer” setting seeing related problems.



Conclusion

• Humans don’t solve NP hard problems.

• Observations of impressive behavior imply 
we’ve framed the problem wrong.

• Happily “stealing” from cognitive science to 
create better learning algorithms.


