UNE W/@mﬁ%

Concept learning as
inductive programming

Noah D. Goodman

Computational Cognitive Science Group,
MIT

Machine learning meets human learning,
NIPS, |12 December 2008

mailto:ndg@mit.edu
mailto:ndg@mit.edu

Motivation

® Three views on concepts:
e Categorization and inference.
® Formal semantics.

® Development.

® Formal apparatus used to capture these
aspects of concepts looks very different!

Motivation

® Three views on concepts:
e Categorization and inference. “statistics’’
® Formal semantics.

® Development.

® Formal apparatus used to capture these
aspects of concepts looks very different!

Motivation

® Three views on concepts:
e Categorization and inference. “statistics”’
® Formal semantics. “composition”

® Development.

® Formal apparatus used to capture these
aspects of concepts looks very different!

Motivation

® Three views on concepts:

e Categorization and inference. “statistics’’
® Formal semantics. “composition”
® Development. “abstract theories”

® Formal apparatus used to capture these
aspects of concepts looks very different!

Our approach

® Concepts as functions in a stochastic
lambda calculus (a.k.a. probabilistic programs).

® The meaning of a stochastic function is
probabilistic.

® Stochastic functions compose (subject to type
constraints).

® Abstraction via higher-order functions;
theories (“inter-related systems of concepts”)
are programs (sets of functions).

® Concept learning is then inductive
(probabilistic) programming.

Function learning

e Can view categorization as inductive learning
of a classifier function. (Goodman, et al, 2008)

(define (Start) (list 'lambda '(x) (Disj)))
(define (Disj) (1f (flip 0.3)
(list 'or (Disj) (Conj))
(Conj)))
(define (Conj) (1f (flip 0.3)
(list 'and (Conj) (Feat))
(Feat)))
(define (Feat) (list 'feat (sample-integer nfeat) 'x))

(lex—-query
'((Label-expression (Start))
(Label-procedure
(noisify (eval Label-expression) b)))
'Label-expression
'(equal? (map Label-procedure obs-objects) obs-labels))

Function learning

e Can view categorization as inductive learning
of a classifier function. (Goodman, et al, 2008)

(define (Start) (list 'lambda '(x) (Disj)))
(define (Disj) (1f (flip 0.3)
(list 'or (Disj) (Conj))
(Conj)))
(define (Conj) (1f (flip 0.3)
(list 'and (Conj) (Feat))
(Feat)))
(define (Feat) (1 For example,could generate:

(lambda (x)
(and (feat 1 x) _

(lex-query ((not (feat 2 x)))))
' ((Label-expression (Start))

(Label-procedure
(noisify (eval Label-expression) b)))
'Label-expression
'(equal? (map Label-procedure obs-objects) obs-labels))

Category learning

® |[nference: MCMC by subtree-regeneration
proposals.

® Select a subtree of the parse tree at random,
re-generate from the grammar.

® Accept/reject according to MH rule.

o (Cf. Church inference algorithm.)

Category learning

® |[nference: MCMC by subtree-regeneration
proposals.

® Select a subtree of the parse tree at random,
re-generate from the grammar.

® Accept/reject according to MH rule.
o (Cf. Church inference algorithm.)

S
D

A

Category learning

® |[nference: MCMC by subtree-regeneration
proposals.

® Select a subtree of the parse tree at random,
re-generate from the grammar.

® Accept/reject according to MH rule.

o (Cf. Church inference algorithm.)

S

R

Category learning

® |[nference: MCMC by subtree-regeneration
proposals.

® Select a subtree of the parse tree at random,
re-generate from the grammar.

® Accept/reject according to MH rule.

o (Cf. Church inference algorithm.)

S S

SR

Category learning

® |[nference: MCMC by subtree-regeneration
proposals.

® Select a subtree of the parse tree at random,
re-generate from the grammar.

® Accept/reject according to MH rule.

o (Cf. Church inference algorithm.)

S S S

//F<\[)\ fD PN

Medin & Schatter, 1978, Predicts human performance
‘s : —— N A0 in several other categorization
| |] RN .) experiments:

¢ Medin, Altom, Edelson, &
Freko (1982).

* *

® Medin & Schwanenflugel

(1981),
Object Feature Values
Al 0001 :
o
A9 0101 Shepard, Hovland, Jenkins
A3 0100 (1961),
A4 0010
A5 1000 50 ® Nosofsky, Clark, & Shin
Bl 0011 =
B2 1001 s (1989),
B3 1110 Z 04
B4 1111 o5 ® Kruschke (1993),
T1 0110 '
12 0111 0.2 ® |ess constrained
T3 0000)
T 1101 categories....
T5 1010 - T
16 1100 . RR predictioné

T7 1011

Theory learning

® Move from learning a function to a set of
inter-related functions -- a program.

® A set of simple (stochastic) classifier
functions that depend on each other gives a
Bayes net.

® |Inductive programming gives Bayesian
structure learning.

® |[earn dependencies and CPDs together.

® Extends naturally to learn types and grounding.
(Cf. causal schemata and grounded causal models.)

Bayes net learning

(define (S) ist 'mem (list 'lambda '(trial) (D))))
(define (D) (flip 0.3) (list 'or (D) (C)) (C)))
(define (C) f (flip 0.3) (list 'and (C) (F)) (F)))
(define (F) f (flip)

ist 'not (list (Var) 'trial))))

(l

(1

(1

(1

(list (Var) 'trial)
(1

) (list 'get-proc (uniform-draw '(A B C))))

(define (Var

(lex-query
'((get-expr (mem (lambda (var) (S))))
(get-proc (lambda (var) (eval (get-expr var))))
(A (get-proc 'A))
(B (get-proc 'B))
(C (get-proc 'C)))
'(map get-expr '(A B C))
'(and (A 'triall) (B 'triall) (not (C 'triall))
(A 'trial2) (not (B 'trial2)) (not (C 'trial2))))

Bayes net learning

(define (S) ist 'mem (list 'lambda '(trial) (D))))
(define (D) (flip 0.3) (list 'or (D) (C)) (C)))
(define (C) f (flip 0.3) (list 'and (C) (F)) (F)))
(define (F) f (flip)

ist 'not (list (Var) 'trial))))

(l

(1

(1

(1

(list (Var) 'trial)
(1

) (list 'get-proc (uniform-draw '(A B C))))

(define (Var

For example, procedure A could be:
(mem (lambda (trial)
(and ((get-proc C) trial)

(lex-query ((get-proc B) trial))))
'((get-expr (mem (lambda (var) (S))))
(get-proc (lambda (var) (eval (get-expr var))))
(A (get-proc 'A))
(B (get-proc 'B))
(C (get-proc 'C)))
'(map get-expr '(A B C))
'(and (A 'triall) (B 'triall) (not (C 'triall))
(A 'trial2) (not (B 'trial2)) (not (C 'trial2))))

Theory learning

® Can imagine learning richer more
abstract theories in the same way.

® The functions become more complex and
manipulate more complex values.

® [et’s look at a standard test case from
cognitive development:
acquiring natural number concepts....

Learning number

How many jelly beans?

Can you give me two jelly beans!?

(Piantadosi, Goodman, Tenenbaum, in prep.)

Learning number

_ _ Highest Count
Approx. age Level Meaning Give N task (Wynn 1992)

No-knower No meanings Gives a handful

Correct for “one”,

One-knower One” means one Handful for anything else

“One” means one, Correct for “one” and “two”,

Two-knower “wo” means two Else handful

“One” means one;

Three-knower “Two” mean two”,
“three” means three

Correct for “one” , “two
“three”; else handful

Use counting to

CP-knower All numbers .
give any number

(Spelke 2003; Wynn 1990, 1992)

(Piantadosi, Goodman, Tenenbaum, in prep.)

Central questions

® How can number concepts be learned!?
(Cf. Rips, et al, 2008, and responses.)

® In a way that doesn’t presuppose integers!
® Explaining the abrupt CP-transition?

® What is the role of language?

Learning number

® Our language is (limited) lambda calculus
with primitives:

* empty?:is this set of objects empty?
* dec:remove a random object from this set.

* prev:previous word in the count-list (a
content-free order on the count words).

e C:get the function for a word.
® (next, and, or,...).

® For example “two”:
(lambda (x) (empty? (dec (dec x))))

Learning number

® | earning data: assume situations for each
number word occur with the frequency of
these words in CHILDES corpus.

Frequency of @
word + noun

“Look at the two blobs!”

Learning number

® |ikelihood: speaker will use a word that is
true in the current situation.

® Uniform choice amongst true words,

® Some probability of saying a word at random.
Cf. Frank, Goodman, Tenenbaum (in press).

® Search for best program using MCMC:

® Same algorithm as used for categorization and
causal learning earlier (MH with subtree-
regeneration proposals).

o,
£
— 2
=
0.0 R g
C 3
® m— £
n —
S
U
—1

_
0k

UOISUDIXD 3294402 YUM sisayrodAy 1saq }Jo jued-307]

Learning number

One knower

| Word | Meaning
HOF Undef
"one" Ax.(empty? (dec x))
"two" Undef
"three" Undef
"four" Undef
Undef
Undef

1
20

W
'S
@)
()
o
o
O
O
i
=
2
(7s]
()
i
')
O
(ol
DN
o
)
(7))
()
0O
G
O
Y
c
«
0
0.0
@)
—

Time (words seen)

Learning number

One knower

| Word | Meaning
HOF Undef
"one" Ax.(empty? (dec x))
"two" Undef
"three" Undef
"four" Undef
Undef
Undef

F 3
'
F

'3

" 4
Two knower |[;
[Word | Meaning |)
HOF Undef
"one" Ax.(empty? (dec x))
"two" Ax.(empty? (dec (dec x)))
"three" Undef
"four" Undef
Undef
Undef

1
20

W
'S
@)
()
o
o
O
O
i
=
2
(7s]
()
i
')
O
(ol
DN
o
)
(7))
()
0O
G
O
4
c
«
0
0.0
@)
—

Time (words seen)

Learning number

One knower

| Word | Meaning
HOF Undef
"one" Ax.(empty? (dec x))
"two" Undef
"three" Undef
"four" Undef
Undef —

Undef -
, "_Th ree knower

Word | Meaning
HOF Undef
"one" Ax.(empty? (dec x))
"two" Ax.(empty? (dec (dec x)))
"three" | Ax.(empty? (dec (dec (dec x))))
"four" Undef

"five" Undef

4 "six" Undef

s
F

'3

" 4
Two knower |[;
[Word | Meaning |)
HOF Undef
"one" Ax.(empty? (dec x))
"two" Ax.(empty? (dec (dec x)))
"three" Undef
"four" Undef
Undef
Undef

1
20

W
'S
@)
()
o
o
O
O
i
=
2
(7s]
()
i
')
O
(ol
DN
o
)
(7))
()
0O
G
O
4
c
«
0
0.0
@)
—

Time (words seen)

Learning number

One knower

| Word | Meaning
HOF Undef
"one" Ax.(empty? (dec x))
"two" Undef
"three" Undef
"four" Undef
"five" Undef
i Undef

'

. "_Three knower

Word | Meaning
HOF Undef
"one" Ax.(empty? (dec x))
"two" Ax.(empty? (dec (dec x)))
"three" | Ax.(empty? (dec (dec (dec x))))
"four" Undef
"five" Undef
"six" Undef

'3

' P kn r
Two knower |; C oWe

[Word | Meaning ' (Conceptual
HOF Undef

T fempty? (dec) re-organization)
"two" Ax.(empty? (dec (dec x))) o
"three” Undef Word Meaning
"four" Undef
" Undef . " .,

- Undef Aw. (if (equal w “one”)

Ax.(empty? (dec x))

T Ax.((C (prevw)) (dec x)))
20

"

W
)
O
()
o
o
O
O
-
=
B2
(7s]
()
-
)
O
(ol
DN
-
)
(7))
()
0O
G
O
4
c
(4]
0
0.0
@)
—

Tlime (words seen)

So...

® Recursive number concepts are formed
from more primitive operations.

® [nductive programming explains

® the order of acquisition,

® the conceptual re-organization giving rise to
the CP transition.

® [earning is dependent on linguistic
“placeholder structure” (the count list),
suggesting new ways to learn programs.

Conclusion

® Viewing concepts as probabilistic
programs entails concept learning as
inductive programming.

® A uniform vision for many concept and
theory learning tasks.

® Extends the reach of Bayesian methods.

® Explains conceptual re-organization, etc.

® Poses novel machine learning problems and

techniques.
(See “Probabilistic Programming” workshop for more.)

