
ndg@mit.edu

Noah D. Goodman
Computational Cognitive Science Group,

MIT

Concept learning as
inductive programming

Machine learning meets human learning,
NIPS, 12 December 2008

mailto:ndg@mit.edu
mailto:ndg@mit.edu

Motivation

• Three views on concepts:

• Categorization and inference.

• Formal semantics.

• Development.

• Formal apparatus used to capture these
aspects of concepts looks very different!

Motivation

• Three views on concepts:

• Categorization and inference.

• Formal semantics.

• Development.

• Formal apparatus used to capture these
aspects of concepts looks very different!

“statistics”

Motivation

• Three views on concepts:

• Categorization and inference.

• Formal semantics.

• Development.

• Formal apparatus used to capture these
aspects of concepts looks very different!

“statistics”

“composition”

Motivation

• Three views on concepts:

• Categorization and inference.

• Formal semantics.

• Development.

• Formal apparatus used to capture these
aspects of concepts looks very different!

“statistics”

“abstract theories”

“composition”

Our approach
• Concepts as functions in a stochastic

lambda calculus (a.k.a. probabilistic programs).

• The meaning of a stochastic function is
probabilistic.

• Stochastic functions compose (subject to type
constraints).

• Abstraction via higher-order functions;
theories (“inter-related systems of concepts”)
are programs (sets of functions).

• Concept learning is then inductive
(probabilistic) programming.

Function learning
• Can view categorization as inductive learning

of a classifier function. (Goodman, et al, 2008)

(define (Start) (list 'lambda '(x) (Disj)))
(define (Disj) (if (flip 0.3)
 (list 'or (Disj) (Conj))
 (Conj)))
(define (Conj) (if (flip 0.3)
 (list 'and (Conj) (Feat))
 (Feat)))
(define (Feat) (list 'feat (sample-integer nfeat) 'x))

(lex-query
 '((Label-expression (Start))
 (Label-procedure
 (noisify (eval Label-expression) b)))
 'Label-expression
 '(equal? (map Label-procedure obs-objects) obs-labels))

Function learning
• Can view categorization as inductive learning

of a classifier function. (Goodman, et al, 2008)

(define (Start) (list 'lambda '(x) (Disj)))
(define (Disj) (if (flip 0.3)
 (list 'or (Disj) (Conj))
 (Conj)))
(define (Conj) (if (flip 0.3)
 (list 'and (Conj) (Feat))
 (Feat)))
(define (Feat) (list 'feat (sample-integer nfeat) 'x))

(lex-query
 '((Label-expression (Start))
 (Label-procedure
 (noisify (eval Label-expression) b)))
 'Label-expression
 '(equal? (map Label-procedure obs-objects) obs-labels))

For example, could generate:
(lambda (x)
 (and (feat 1 x)
 ((not (feat 2 x)))))

Category learning
• Inference: MCMC by subtree-regeneration

proposals.

• Select a subtree of the parse tree at random,
re-generate from the grammar.

• Accept/reject according to MH rule.

• (Cf. Church inference algorithm.)

Category learning
• Inference: MCMC by subtree-regeneration

proposals.

• Select a subtree of the parse tree at random,
re-generate from the grammar.

• Accept/reject according to MH rule.

• (Cf. Church inference algorithm.)

S
D

F

Category learning
• Inference: MCMC by subtree-regeneration

proposals.

• Select a subtree of the parse tree at random,
re-generate from the grammar.

• Accept/reject according to MH rule.

• (Cf. Church inference algorithm.)

S
D

F

Category learning
• Inference: MCMC by subtree-regeneration

proposals.

• Select a subtree of the parse tree at random,
re-generate from the grammar.

• Accept/reject according to MH rule.

• (Cf. Church inference algorithm.)

S
D

F

S
D

Category learning
• Inference: MCMC by subtree-regeneration

proposals.

• Select a subtree of the parse tree at random,
re-generate from the grammar.

• Accept/reject according to MH rule.

• (Cf. Church inference algorithm.)

S
D

F

S
D

S
D

C
F F

A RATIONAL ANALYSIS OF RULE-BASED CONCEPT LEARNING 11

(a) (b)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Complexity

P
o

st
er

io
r

co
m

p
le

x
it

y
 w

ei
g

h
t

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Feature
P

o
st

er
io

r
fe

at
u

re
 w

ei
g

h
t

Figure 3. (a) Posterior complexity distribution of the RRDNF model (b=1) for the category structure of Medin & Schaffer (1978), see
Table 3. (b) Posterior feature weights for this category structure. Together these weight distributions indicate that the RRDNF model focuses
on simple rules along features 1 and 3.

Table 3
The category structure of Medin & Schaffer (1978), with the
human data of Nosofsky et al. (1994), and the predictions of
the Rational Rules model (b=1).
Object Feature Values Human RRDNF

A1 0001 0.77 0.82
A2 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
B1 0011 0.39 0.47
B2 1001 0.41 0.47
B3 1110 0.21 0.21
B4 1111 0.15 0.07
T1 0110 0.56 0.57
T2 0111 0.41 0.44
T3 0000 0.82 0.95
T4 1101 0.40 0.44
T5 1010 0.32 0.28
T6 1100 0.53 0.57
T7 1011 0.20 0.13

arable concepts could be harder for human participants to
learn than closely matched concepts which were not lin-
early separable. As an example, consider Medin and Schwa-
nenflugel (1981), Experiment 3, in which participants were
trained on the two concepts shown in Table 4, and tested on
classification accuracy for the training set. Concept LS is
linearly separable, Concept NLS is not, and the two concepts

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A1

A2

A3

A4

A5

B1

B2

B3

B4

T1

T2

T3

T4

T5

T6

T7

RR predictions

H
u

m
an

 m
ea

n

Figure 2. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Schaffer (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
make fewer errors on Concept NLS (Fig. 4a). In Fig. 4b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters

R2 = 0.98
Object Feature Values

A1 0001
A2 0101
A3 0100
A4 0010
A5 1000
B1 0011
B2 1001
B3 1110
B4 1111
T1 0110
T2 0111
T3 0000
T4 1101
T5 1010
T6 1100
T7 1011

Results
Predicts human performance
in several other categorization
experiments:

• Medin, Altom, Edelson, &
Freko (1982).

• Medin & Schwanenflugel
(1981),

• Shepard, Hovland, Jenkins
(1961),

• Nosofsky, Clark, & Shin
(1989),

• Kruschke (1993),

• Less constrained
categories....

Medin & Schaffer, 1978:

Theory learning
• Move from learning a function to a set of

inter-related functions -- a program.

• A set of simple (stochastic) classifier
functions that depend on each other gives a
Bayes net.

• Inductive programming gives Bayesian
structure learning.

• Learn dependencies and CPDs together.

• Extends naturally to learn types and grounding.
(Cf. causal schemata and grounded causal models.)

Bayes net learning

(lex-query
 '((get-expr (mem (lambda (var) (S))))
 (get-proc (lambda (var) (eval (get-expr var))))
 (A (get-proc 'A))
 (B (get-proc 'B))
 (C (get-proc 'C)))
 '(map get-expr '(A B C))
 '(and (A 'trial1) (B 'trial1) (not (C 'trial1))
 (A 'trial2) (not (B 'trial2)) (not (C 'trial2))))

(define (S) (list 'mem (list 'lambda '(trial) (D))))
(define (D) (if (flip 0.3) (list 'or (D) (C)) (C)))
(define (C) (if (flip 0.3) (list 'and (C) (F)) (F)))
(define (F) (if (flip)
 (list (Var) 'trial)
 (list 'not (list (Var) 'trial))))
(define (Var) (list 'get-proc (uniform-draw '(A B C))))

Bayes net learning

(lex-query
 '((get-expr (mem (lambda (var) (S))))
 (get-proc (lambda (var) (eval (get-expr var))))
 (A (get-proc 'A))
 (B (get-proc 'B))
 (C (get-proc 'C)))
 '(map get-expr '(A B C))
 '(and (A 'trial1) (B 'trial1) (not (C 'trial1))
 (A 'trial2) (not (B 'trial2)) (not (C 'trial2))))

(define (S) (list 'mem (list 'lambda '(trial) (D))))
(define (D) (if (flip 0.3) (list 'or (D) (C)) (C)))
(define (C) (if (flip 0.3) (list 'and (C) (F)) (F)))
(define (F) (if (flip)
 (list (Var) 'trial)
 (list 'not (list (Var) 'trial))))
(define (Var) (list 'get-proc (uniform-draw '(A B C))))

For example, procedure A could be:
(mem (lambda (trial)
 (and ((get-proc C) trial)
 ((get-proc B) trial))))

Theory learning

• Can imagine learning richer more
abstract theories in the same way.

• The functions become more complex and
manipulate more complex values.

• Let’s look at a standard test case from
cognitive development:
acquiring natural number concepts....

Learning number

How many jelly beans?

Can you give me two jelly beans?

(Piantadosi, Goodman, Tenenbaum, in prep.)

Learning number

Developmental trajectory
Approx. age Level Meaning Give N task

< 2 No-knower No meanings Gives a handful

2 – 2;6 One-knower “One” means one
4.8

2;6 – 3;3 Two-knower
5.7

3;3 – 3;6 Three-knower

5.6

> 3;6 CP-knower All numbers

Highest Count
(Wynn 1992)

Correct for “one”,
Handful for anything else

“One” means one,
“two” means two

Correct for “one” and “two”,
Else handful

“One” means one;
“Two” mean two”,

“three” means three

Correct for “one” , “two”
“three”; else handful

Use counting to
give any number

(Spelke 2003; Wynn 1990, 1992)

(Piantadosi, Goodman, Tenenbaum, in prep.)

Central questions

• How can number concepts be learned?
(Cf. Rips, et al, 2008, and responses.)

• In a way that doesn’t presuppose integers?

• Explaining the abrupt CP-transition?

• What is the role of language?

Learning number
• Our language is (limited) lambda calculus

with primitives:

• empty?: is this set of objects empty?

• dec: remove a random object from this set.

• prev: previous word in the count-list (a
content-free order on the count words).

• C: get the function for a word.

• (next, and, or, ...).

• For example “two”:
(lambda (x) (empty? (dec (dec x))))

Learning number
• Learning data: assume situations for each

number word occur with the frequency of
these words in CHILDES corpus.

“Look at the two blobs!”

Frequency of
word + noun

Learning number

• Likelihood: speaker will use a word that is
true in the current situation.

• Uniform choice amongst true words,

• Some probability of saying a word at random.
Cf. Frank, Goodman, Tenenbaum (in press).

• Search for best program using MCMC:

• Same algorithm as used for categorization and
causal learning earlier (MH with subtree-
regeneration proposals).

Time (words seen)

Lo
g-

ra
nk

 o
f b

es
t

hy
po

th
es

is
 w

ith
 c

or
re

ct
 e

xt
en

si
on

Learning number

Time (words seen)

Lo
g-

ra
nk

 o
f b

es
t

hy
po

th
es

is
 w

ith
 c

or
re

ct
 e

xt
en

si
on

Learning number
One knower

Time (words seen)

Lo
g-

ra
nk

 o
f b

es
t

hy
po

th
es

is
 w

ith
 c

or
re

ct
 e

xt
en

si
on

Learning number
One knower

Two knower

Time (words seen)

Lo
g-

ra
nk

 o
f b

es
t

hy
po

th
es

is
 w

ith
 c

or
re

ct
 e

xt
en

si
on

Learning number
One knower

Two knower

Three knower

Time (words seen)

Lo
g-

ra
nk

 o
f b

es
t

hy
po

th
es

is
 w

ith
 c

or
re

ct
 e

xt
en

si
on

Learning number
One knower

Two knower

Three knower

CP knower
(conceptual
re-organization)

So...
• Recursive number concepts are formed

from more primitive operations.

• Inductive programming explains

• the order of acquisition,

• the conceptual re-organization giving rise to
the CP transition.

• Learning is dependent on linguistic
“placeholder structure” (the count list),
suggesting new ways to learn programs.

Conclusion

• Viewing concepts as probabilistic
programs entails concept learning as
inductive programming.

• A uniform vision for many concept and
theory learning tasks.

• Extends the reach of Bayesian methods.

• Explains conceptual re-organization, etc.

• Poses novel machine learning problems and
techniques.
(See “Probabilistic Programming” workshop for more.)

